

ABSTRACT

 This Project is on “3D BIKE SIMULATION” Computer Graphics using OpenGL

Functions. It is a User interactive program where in the User can view the required display

by making use of the input devices like Keyboard and Mouse. This project mainly consists of

a bike and a robot. The Robot is made to sit on the bike, so that it looks like a man riding it.

The bike can be viewed in any direction and in any angle. The bike is accelerated and its

movements are controlled using the keyboard. For viewing, we make use of the mouse. The

bike is ridden on a polygonal surface, which looks like a giant rectangular mesh. Lighting

has been incorporated on only one side-Viewer side.

TABLE OF CONTENTS

Sl. no Page no.

1. Introduction

 1.1: Computer Graphics 1

 1.2: OpenGL Interface 2

 1.3: OpenGL Overview 2

2. System specification

 2.1: Software Requirements 4

 2.2: Hardware Requirements 4

 2.3: Functional Requirement 5

3. About the Project

 3.1: Overview 6

 3.2: User interface 6

 3.3: Objective 7

4. Implementation

 4.1: Existing System 8

 4.2: Proposed System 8

 4.3: UserDefined Functions 9

 4.4: Opengl Functions 10

5. TTeessttiinngg 1122

6. Snapshots 13

7. Conclusion and Future Scope

 7.1: Conclusion 16

 7.2: Future Enhancements 16

 7.3: Limitations 16

 Bibliography

3D Bike Simulation

1

 CHAPTER 1

IINNTTRROODDUUCCTTIIOONN

 This report contains implementation of ‘3D BIKE SIMULATION ‘using a set of

OpenGL functions. The project consists of different views for 3D bike. We are mainly using

keyboard and mouse as interface to view the bike, to accelerate, control it’s movements. The

objects are drawn by using GLUT functions. This project has been developed using

Ubuntu11.10 with OpenGL package.

1.1 Computer Graphics

 Graphics provides one of the most natural means of communicating within a computer,

since our highly developed 2D and 3D pattern-recognition abilities allow us to perceive and

process pictorial data rapidly and effectively. Interactive computer graphics is the most

important means of producing pictures since the invention of photography and television. It

has the added advantage that, with the computer, we can make pictures not only of concrete

real world objects but also of abstract, synthetic objects, such as mathematical surfaces and

of data that have no inherent geometry, such as survey results.

 Computer graphics started with the display of data on hardcopy plotters and cathode ray

tube screens soon after the introduction of computers themselves. It has grown to include the

creation, storage, and manipulation of models and images of objects. These models come

from a diverse and expanding set of fields, and include physical, mathematical, engineering,

architectural, and even conceptual structures, natural phenomena, and so on. Computer

graphics today is largely interactive. The user controls the contents, structure, and appearance

of the objects and of their displayed images by using input devices, such as keyboard, mouse,

or touch-screen. Due to close relationships between the input devices and the display, the

handling of such devices is included in the study of computer graphics. The advantages of the

interactive graphics are many in number. Graphics provides one of the most natural means of

communicating with a computer, since our highly developed 2D and 3D patter-recognition

abilities allow us to perceive and process data rapidly and efficiently. In many design,

implementation, and construction processes today, the information pictures can give is

virtually indispensable. Scientific visualization became an important field in the 1980s when

3D Bike Simulation

2

the scientists and engineers realized that they could not interpret the prodigious quantities of

data produced in supercomputer runs without summarizing the data and highlighting trends

and phenomena in various kinds of graphical representations.

1.2OpenGL Interface

OpenGL is an application program interface (API) offering various functions to implement

primitives, models and images. This offers functions to create and manipulate render

lighting, coloring, viewing the models. OpenGL offers different coordinate system and

frames. OpenGL offers translation, rotation and scaling of objects.

Most of our applications will be designed to access OpenGL directly through functions in

three libraries. They are:

1. Main GL: Library has names that begin with the letter gl and are stored in a library

usually referred to as GL.

2. OpenGL Utility Library (GLU): This library uses only GL functions but contains

code for creating common objects and simplifying viewing.

3. OpenGL Utility Toolkit(GLUT): This provides the minimum functionality that

should be accepted in any modern windowing system.

1.3OpenGL Overview

 OpenGL (Open Graphics Library) is the interface between a graphic program and

graphics hardware. It is streamlined. In other words, it provides low-level

functionality. For example, all objects are built from points, lines and convex

polygons. Higher level objects like cubes are implemented as six four-sided polygons.

 OpenGL supports features like 3-dimensions, lighting, anti-aliasing, shadows,

textures, depth effects, etc.

 It is system-independent. It does not assume anything about hardware or operating

system and is only concerned with efficiently rendering mathematically described

scenes. As a result, it does not provide any windowing capabilities.

 It is a state machine. At any moment during the execution of a program there is a

current model transformation

 It is a rendering pipeline. The rendering pipeline consists of the following steps:

o Defines objects mathematically.

3D Bike Simulation

3

o Arranges objects in space relative to a viewpoint.

o Calculates the color of the objects.

o Rasterizes the objects.

 Graphics provides one of the most natural means of communicating with a computer,

since our highly developed 2D and 3D pattern-recognition abilities allow us to perceive and

process pictorial data rapidly and efficiently. Interactive computer graphics is the most

important means of producing pictures since the invention of photography and television. It

has the added advantage that, with the computer, we can make pictures not only of concrete

real world objects but also of abstract, synthetic objects, such as mathematical surfaces and

of data that have no inherent geometry, such as survey results.

 OpenGL (open graphics library) is a standard specification defining a cross language

cross platform API for writing applications that produce 2D and 3D computer graphics.

OpenGL was developed by silicon graphics Inc. (SGI) in 1992 and is widely used in CAD,

virtual reality, scientific visualization, information visualization and flight simulation. It is

also used in video games.

OpenGL serves two main purpose:

 To hide the complexities of interfacing with different 3D accelerators, by

presenting programmer with a single, uniform API

 To hide the differing capabilities of hardware platforms, by requiring that all

Implementations support the full openGL, feature set.

OpenGL has historically been influential on the development of 3D accelerator, promoting a

base level of functionality that is now common in consumer level hardware:

 Rasterized points, lines and polygons are basic primitives.

 A transform and lighting pipeline.

 Z buffering.

 Texture Mapping.

 Alpha

 Blending.

3D Bike Simulation

4

 Chapter 2

SYSTEM REQUIREMENTS SPECIFICATION

2.1 HARDWARE REQUIREMENTS

 Microprocessor: 1.0 GHz and above CPU based on either AMD or INTEL

 Microprocessor Architecture

 Main memory : 2 GB RAM

 Hard Disk : 40 GB

 Hard disk speed in RPM:5400 RPM

 Keyboard: QWERTY Keyboard

 Mouse :2 or 3 Button mouse

 Monitor : 1024 x 768 display resolution

2.2 SOFTWARE REQUIREMENTS

 Programming language – C/C++ using OpenGL

 Operating system – Linux operating system

 Compiler – C Compiler

 Graphics library – GL/glut.h

 OpenGL 2.0

3D Bike Simulation

5

22..33::FFUUNNCCTTIIOONNAALL RREEQQUUIIRREEMMEENNTTSS::

OpenGL APIs:

If we want to have a control on the flow of program and if we want to interact with

the window system then we use OpenGL API’S. Vertices are represented in the same manner

internally, whether they are specified as two-dimensional or three-dimensional entities,

everything that we do are here will be equally valid in three dimensions. Although OpenGL

is easy to learn, compared with other APIs, it is nevertheless powerful. It supports the simple

three dimensional programs and also supports the advanced rendering techniques.

GL/glut.h:

We use a readily available library called the OpenGL Utility Toolkit (GLUT), which

provides the minimum functionality that should be expected in any modern windowing

system.

The application program uses only GLUT functions and can be recompiled with the GLUT

library for other window system. OpenGL makes a heavy use of macros to increase code

readability and avoid the use of magic numbers. In most implementation, one of the include

lines

3D Bike Simulation

6

Chapter 3

ABOUT THE PROJECT

3.1 Overview

 This Project is on “3D BIKE SIMULATION” Computer Graphics using OpenGL

Functions. It is a User interactive program where in the User can view the required display

by making use of the input devices like Keyboard and Mouse. This project mainly consists of

an 3D bike on which a robot sits. The bike can be viewed in any direction using Mouse. The

bike movement is done with the help of the Keyboard.

3.2 User interface

 A set of keys are used to change the following:

 User can select the view of the bike by using Mouse and Keyboard.

 Acceleration of the bike is controlled by ‘+’.

 De-acceleration is done using the key ‘-‘.

 Movement of the bike is controlled by the keys ‘1’-left and ‘2’-right.

 Zooming in is controlled by the UP arrow key.

 Zoom out is controlled by the DOWN arrow key.

 To move the camera towards left, key to be used is LEFT arrow key.

 To move the camera towards right, key to be used is RIGHT arrow key.

 To reset the scene, key to be used is ‘r’ or ‘R’.

3.3 OBJECTIVE:

 The aim of the project is to demonstrate the 3D Bike Simulation with multiple

views.

 As Linux doesn’t provide graphics editor, it should be designed in such a way that

it provides a very useful graph implementation interface.

3D Bike Simulation

7

 It should be easy to understand, user interactive interface.

 Creation of primitives, i.e. polygons

 Providing human interaction through Mouse and keyboard.

3D Bike Simulation

8

CHAPTER 4

IMPLEMENTATION

4.1 EXISTING SYSTEM

 Existing system for a graphics is the TC++. This system will support only the 2D

graphics. 2D graphics package being designed should be easy to use and understand. It

should provide various options such as free hand drawing, line drawing, polygon drawing,

filled polygons, flood fill, translation, rotation, scaling, clipping etc. Even though these

properties were supported, it was difficult to render 2D graphics cannot be very difficult to

get a 3 Dimensional object. Even the effects like lighting, shading cannot be provided. So we

go for Microsoft Visual Studio software.

4.2 PROPOSED SYSTEM

 To achieve three dimensional effects, open GL software is proposed. It is software

which provides a graphical interface. It is an interface between application program and

graphics hardware. The advantages are:

1. Open GL is designed as a streamlined.

2. It’s a hardware independent interface i.e it can be implemented on many different

hardware platforms.

3. With Open GL we can draw a small set of geometric primitives such as points,

lines and polygons etc.

4. It provides double buffering which is vital in providing transformations.

5. It is event driven software.

6. It provides call back functions.

3D Bike Simulation

9

4.3 USER DEFINED FUNCTIONS

ZCylinder(): This function includes creation of a cylinder within an outer cylinder to give

it a 3D effect.

XCylinder(): This function creates the outer cylinder, it has been called as and when

required.

drawFrame(): This function is used to draw the frame of the bike. XCylinder() has been

called several times in this.

gear(): This function is mainly used to draw the gear of the bike. It has been declared

outside the drawFrame(), since its rotation itself is complex and it should rotate faster once

the speed of the bike is increased.

ddrraawwCChhaaiinn(()):: This function is used to draw the chain to the gear. It has been created

using the api GL_LINE_STIPPLE.

drawTyre(): This function is used to create the tyres for the bike. In this function the

components of the wheel such as spokes, rims and disc brake are included.

drawSeat(): This function is used to draw the rider’s seat. glVertex3f() has been utilized

multiple times for top, bottom and side faces of the seat.

reset(): Once ‘r’ or ‘R’ key is pressed, the bike and the camera are brought back to their

initial positions.

Idle(): This function will loop back and display what the user wants. i.e. if no key is pressed

the bike will be in its resting place. If any of the movement keys are pressed then motion of

the bike and the camera movement(and its orientation) will be observed.

updateScene(): This function is used to update the viewing screen once the user presses

RIGHT or LEFT arrow key.

landmarks(): This function is used to create the ground for the bike on which it moves.

The surface is a giant rectangular mesh whose dimensions are beyond infinity.

special(): This function is used to move the camera UP, DOWN, LEFT or RIGHT.

motion(): This function includes forward movement of the bike. As the user presses the ‘-‘

key, the de-acceleration of the bike can be observed.

degrees(): This function is used to convert the given angle from radians to degrees.

3D Bike Simulation

10

radians(): This function is used to convert the given angle from degrees to radians.

angleSum(): This function is used to calculate the total angle for handle rotation if long

press of key ‘1’ or ‘2’ is made.

 mmaaiinn(())::

The main function is used for creating the window for display of the model of the

atom. Here, we create menu for ease of use for the user. The callback functions, i.e., mouse

callback, keyboard callback, display callback, idle callback, are written in main. The callback

functions registered in main () are,

 glutDisplayFunc(display);

glutKeyboardFunc(Keyboard);

glutSpecialFunc(Special);

4.4 OPENGL FUNCTIONS

glColor3f (float, float, float):-This function will set the current drawing color

glClear():-Takes a single argument that is the bitwise OR of several values indicating

which buffer is to be cleared.

glClearColor ():-Specifies the red, green, blue, and alpha values used by glClear to clear

the color buffers.

GlLoadIdentity():-the current matrix with the identity matrix.

glMatrixMode(mode):-Sets the current matrix mode, mode can be GL_MODELVIEW,

GL_PROJECTION or GL_TEXTURE.

 void glutInit (int *argc, char**argv):-Initializes GLUT, the arguments from main are

passed in and can be used by the application.

3D Bike Simulation

11

void glutInitDisplayMode (unsigned int mode):-Requests a display with the properties in

mode. The value of mode is determined by the logical OR of options including the color

model and buffering.

void glutInitWindowSize (int width, int height):- Specifies the initial position of the top-

left corner of the window in pixels

glutInitCreateWindow (char *title):-A window on the display.The string title can be used

to label the window. The return value provides references to the window that can be used

when there are multiple windows.

void glutMouseFunc(void *f(int button, int state, int x, int y):-Register the mouse

callback function f. The callback function returns the button,the state of button after the event

and the position of the mouse relative to the top-left corner of the window.

void glutKeyboardFunc(void(*func) (void)):-This function is called every time when you

press enter key to resume the game or when you press ‘b’ or ‘B’ key to go back to the initial

screen or when you press esc key to exit from the application.

void glutDisplayFunc (void (*func) (void)):-Register the display function func that is

executed when the window needs to be redrawn.

void glutSpecialFunc(void(*func)(void)):-This function is called when you press the

special keys in the keyboard like arrow keys, function keys etc. In our program, the func is

invoked when the up arrow or down arrow key is pressed for selecting the options in the

main menu and when the left or right arrow key is pressed for moving the object(car)

accordingly.

glutPostReDisplay () :-which requests that the display callback be executed after the current

callback returns.

3D Bike Simulation

12

void MouseFunc (void (*func) void)):-This function is invoked when mouse keys are

pressed. This function is used as an alternative to the previous function i.e., it is used to move

the object(car) to right or left in our program by clicking left and right button respectively.

void glutMainLoop ()

Cause the program to enter an event-processing loop.It should be the last statement in main

function.

3D Bike Simulation

13

CCHHAAPPTTEERR 55

TTEESSTTIINNGG

Testing process started with the testing of individual program units such as functions or

objects. These were then integrated into sub-systems and systems, and interactions of these

units were tested.

Testing involves verification and validation.

Validation: “Are we building right product?”

Verification: “Are we building the product right?”

The ultimate goal of the verification and validation process is to establish confidence

that the software system is ‘fit for purpose’. The level of required confidence depends on the

system’s purpose, the expectations of the system users and the current marketing

environment for the system.

With the verification and validation process, there are two complementary approaches

to the system checking and analysis:

Software inspections or peer reviews analyses and check system representations such

as the requirements document, design diagrams, and the program source code. Software

testing involves running an implementation of the software with test data.

3D Bike Simulation

14

CHAPTER 6

SNAPSHOTS

 Bike after running the code

 Bike moved away from the viewer

3D Bike Simulation

15

 Mouse orientation towards x-y-axes

 Bike when it turns left

3D Bike Simulation

16

 Bike when it approaches the viewer

 The rider inclines towards right when handle rotates right

3D Bike Simulation

17

 The rider inclines towards left when handle rotates left

3D Bike Simulation

18

Chapter 7

CONCLUSION AND FUTURE SCOPE

7.1 CONCLUSION

The 3D Bike Simulation has been tested under Ubuntu 11.10, and has been found to provide

ease of use and manipulation to the user. The 3D Bike Simulation created for the Ubuntu

11.10 operating system can be used to draw lines, boxes, circles, ellipses, and polygons. It

has a very simple and effective user interface.

 We found designing and developing this 3D Bike as a very interesting and learning

experience. It helped us to learn about computer graphics, design of Graphical User

Interfaces, interface to the user, user interaction handling and screen management. The

graphics editor provides all and more than the features that have been detailed in the

university syllabus.

7.2 FUTURE ENHANCEMENTS

These are the features that are planned to be supported in the future

 * Simulating smoke from exhaust pipe

 * Perform wheelie by the rider

 * To improve the looks of the rider

 * To implement shadow using more built-in functions

7.3 LIMITATIONS

As with all types of parallel projection, objects drawn with isometric projection do not appear

larger or smaller as they extend closer to or away from the viewer. Since lighting has been

given from only one side, the light will not be illuminated on the other side. Hence, the left

part of the bike is seen as dark. As we have generated cylinders within a cylinder, it so

happens that when we move from right to left or vice-versa, the surface of inner cylinder is

seen through the outer one.

3D Bike Simulation

19

BIBLIOGRAPHY

[1] Edward Angel’s Interactive Computer Graphics Pearson Education 5
th

 Edition

[2] Interactive computer Graphics --A top down approach using open GL--by

Edward Angle

[3] Jackie.L.Neider,Mark Warhol,Tom.R.Davis,"OpenGL Red Book",Second

Revised Edition,2005.

 [4] Donald D Hearn and M.Pauline Baker,"Computer Graphics with OpenGL",

3rd Edition.

[5] Portion of the code for implementing GEAR has been borrowed from Brian

Paul’s MESA.

Project on ‘3D BIKE SIMULATION’

Commands to execute:

In terminal, type the following command to compile the

program

 “gcc project.c -lglut -lGL –lGLU -lm”

 After compiling to run the program type

 “./a.out”

