
BULLZ EYE

Dept of CS&E CEC , Bangalore 2010-2011
 1

INTRODUCTION

Description of the project

This project is a simple game as described above using openGL.The game involves shooting

of arrows one after the other in order to hit the balls which are moving at a constant speed in

the right end.

 User has to shoot the balls by pressing the key 'f' on the keyboard.

How to play

This game has two levels

1st level-The main aim is to strike the balls thrice within the given number of arrows which is

30.Upon winning this the user moves to the next level.If the user is unable to accomplish this

he loses the game.

The user can directly jump to the second level without playing the first level.

2nd level-The main aim is to strike the balls thrice within the given number of arrows which

is 20.If the user is unable to accomplish this he loses the game.

BULLZ EYE

Dept of CS&E CEC , Bangalore 2010-2011
 2

INTRODUCTION TO OPENGL

Most of our application will be designed to access OpenGL directly through functions in

three libraries. Functions in the main GL (or OpenGL in windows) library have names that

begin with the letters gl and are stored in a library usually referred to as GL (or OpenGL in

windows).

The second is the OpenGL Utility Library (GLU). This library uses only GL functions but

contains code for creating common objects and simplifying viewing. All functions in GLU

can be created from the core GL library but application programmers prefer not to write the

code repeatedly. The GLU library is available in all OpenGL implementations; functions in

the GLU library begin with letters glu.

To interface with the window system and to get input from external devices into our

programs, we need at least one more system-specific library that provides the “glue” between

the window system and OpenGL. For the X window system, this library is functionality that

should be expected in any modern windowing system.

Fig 2.1 shows the organization of the libraries for an X Window System environment.

For this window system, GLUT will use GLX and the X libraries. The application program,

however, can use only GLUT functions and thus can be recompiled with the GLUT library

for other window systems.

BULLZ EYE

Dept of CS&E CEC , Bangalore 2010-2011
 3

Fig 1.2 Library organization

1.2.1:OpenGL Command Syntax:

OpenGL commands use the prefix gl and initial capital letters for each word making up the

command name. Similarly, OpenGL defined constants begin with GL_, use all capital letters

and use underscores to separate words (like GL_COLOR_BUFFER_BIT).

 OpenGL

application

Program

 GLU

 GL

 GLUT

 GLX

Xlib, Xtk

Frame

Buffer

BULLZ EYE

Dept of CS&E CEC , Bangalore 2010-2011
 4

LITERATURE SURVEY

The OpenGL Programming Guide - The Redbook

The OpenGL Programming Guide 5th Edition The Official Guide to Learning
OpenGL Version 2.1

The OpenGL Programming Guide, Fifth Edition, provides definitive and comprehensive

information on OpenGL and the OpenGL Utility Library. The previous edition covered

OpenGL through Version 1.3 and 1.4. This fifth edition of the best-selling "red book"

describes the latest features of OpenGL Versions 1.5 and 2.0, including the introduction of the

OpenGL Shading Language. You will find clear explanations of OpenGL functionality and

many basic computer graphics techniques, such as building and rendering 3D models;

interactively viewing objects from different perspective points; and using shading, lighting,

and texturing effects for greater realism. In addition, this book provides in-depth coverage of

advanced techniques, including texture mapping, antialiasing, fog and atmospheric effects,

NURBS, image processing, and more. The text also explores other key topics such as

enhancing performance, OpenGL extensions, and cross-platform techniques. This fifth

edition has been extensively updated to include the newest features of OpenGL, versions 1.5

and 2.0.

 www.opengl.org for OpenGL tutorials

Pervisim offers consulting and software development for visualization

leveraging OpenGL

Pervisim is a new consulting and software development firm located in Cary, NC that

specializes in 3D visualization applications. Recently completed and revived projects include

mashup visualizations that create terrain visualizations in 3D pdf and molecular modeling

using OpenGL.

http://www.opengl.org/
http://www.pervisim.com/opengldirectx.htm
http://www.pervisim.com/opengldirectx.htm

BULLZ EYE

Dept of CS&E CEC , Bangalore 2010-2011
 5

VSFL – Very Simple Font Library

Text rendering is very useful to display information on top of a 3D world. VSFL aims at

providing users with the ability to render bitmapped text in an OpenGL application using the

core profile. With immediate mode gone in core OpenGL versions, so are the vast majority of

font libs that worked with OpenGL. Immediate mode was terribly slow, and code wise very

extensive. Vertex Buffers are clearly the way to go. This lib uses VAOs and vertex buffers to

render text.

RenderStream 21.6 Teraflop Servers and Workstations for OpenCL -

OpenGL

RenderStream announced its AMD Radeon based 21.6 teraflop servers and workstations for

OpenCL / OpenGL / Brooks based applications and product development. The workstations

offer 1,536 stream processors and eight GPUs per system, which provide access to 12,288

cores and 21.6 TFLOPS of aggregate compute power. As an example from information

security, the HD 6970 and HD 6990 based VDACTr8 evaluated over 45 billion solutions per

second versus 18 billion for the GTX 580 based systems, depending on the implementation.

Third part of an in-depth tutorial to OpenGL

The last part of this series about OpenGL and OpenGL ES on DB-Interactively blog. The

other tutorials came with a sample project to iPhone/iPad and covered the most important

concepts of OpenGL. This last tutorial comes with a lot of informations about how to make

2D applications using OpenGL. As well, this tutorial brings:

 Multisampling

 PVRTC and textures

 Optimizations

.

http://www.lighthouse3d.com/very-simple-libs/vsfl/
http://www.hpcwire.com/hpcwire/2011-05-11/renderstream_announces_21_6_teraflop_servers_and_workstations_for_opencl.html
http://www.hpcwire.com/hpcwire/2011-05-11/renderstream_announces_21_6_teraflop_servers_and_workstations_for_opencl.html
http://db-in.com/blog/2011/05/all-about-opengl-es-2-x-part-33/

BULLZ EYE

Dept of CS&E CEC , Bangalore 2010-2011
 6

REQUIREMENTS SPECIFICATION

The requirements can be broken down into 2 major categories namely hardware and software

requirements. The former specifies the minimal hardware facilities expected in a system in

which the project has to be run. The latter specifies the essential software needed to build and

run the project.

Hardware Requirements:

 The hardware requirement is minimal and the software can run with minimal requirements.

The basic requirements are as enlisted below:

1. Processor: Intel 486/ Pentium processor or a processor with higher

specifications

2. Processor speed: 500MHz or above.

3. RAM : 64MB or above

4. Storage space : 2MB or above

5. Monitor resolution: A color monitor with a minimum resolution of 640

* 480.

Software Requirements:

1. An MS-DOS based operating system like Windows 98, Windows 2000

or Windows XP is the platform required to develop the 3D simulation.

2. A C/C++ (integrated with OPEN GL) compiler like Eclipse is required

for compiling the source code to make the executable file which can then

be directly executed.

3. A built in graphics library; glut.h is required for drawing the layout of

the game.

4. glut32.dll for running the application.

BULLZ EYE

Dept of CS&E CEC , Bangalore 2010-2011
 7

SOFTWARE DESIGN

This project has been created using the OpenGL interface along with the GLUT(OpenGL

Library Toolkit), using the platform Eclipse as the compiling tool. This game has been

designed in a simple and lucid manner so that further developments can be made, and run on

many platforms with a few changes in the code.

We begin our game by providing a simple menu option upon right click of the mouse to

display 2 levels of the game which the user can choose, and a third option to exit the game.

Upon selecting the first level, a red ball is continuously produced and moves upwards at the

right side of the screen. Hitting the ‘f’ key on the keyboard produces an arrow, which the user

must aim to hit the balls with. On successful contact with the ball, the game registers it as a

‘HIT’ and increments a counter variable. A count of 3 (i.e 3 hits) takes the player to the next

level of the game.

Level 2 increases the difficulty level by producing2 colours of balls- a blue one and a red one.

While the red is as before produced continuously and moves from bottom to top, the blue one

moves from top to bottom at irregular intervals to confuse the player. The player needs to aim

correctly and target only the red ones. Player needs to again score a minimum of 3 ‘hits’ to be

a Winner.

Level 2 can be directly entered in the beginning itself (without playing level 1). We provide

this option so that the player can choose his difficulty level.

The underlying logic of the game is Collision detection. The bounds of the ball are detected

with the bounds, or the continuously changing position of the arrow head. 2 variables ‘pos’

(for the arrowhead) and ‘up’ (for the ball) are kept tab of, and are updated with their changing

values.

BULLZ EYE

Dept of CS&E CEC , Bangalore 2010-2011
 8

If the given position vector does intersect with the current value of the ‘up’, we infer that a

collision has been detected and register it as a hit, and increment ‘counter’. Other wise the

function returns a NULL.

Once a ‘hit’ takes place, we call a Sleep() timer (as buffers are too fast to see the collision in

our game), show the ball burst (without particle effect or engines) and reset the ball to its

initial position and the cycle starts all over again.

Careful observation of these values have been made while developing the game.

To model the objects as 3D entities we also use the effects of lighting in our game via 4

different mechanisms:

AMBIENT - light that comes from all directions equally and is scattered in all directions

equally by the polygon.

 DIFFUSE - light that comes from a point source and hits surfaces with an intensity that

depends on whether they face towards the light or away from it. SPECULAR - light is

reflected more in the manner of a mirror where most of the light bounces off in a particular

direction defined by the surface shape.

EMISSION - the light is actually emitted by the polygon - equally in all directions.

Texture is yet another feature we have implemented to show the material properties of the

object, in whichever small way we could.

BULLZ EYE

Dept of CS&E CEC , Bangalore 2010-2011
 9

IMPLEMENTATION

 Choose():

This function gives a switch case to choose from the different menu options. Choosing case 2

(Level 1) calls the function Display1() and choosing case 3 (Level 2) calls Display2().

Choosing quit case 1 will exit from the game at any point in the game.

Display():

sets the background colour and clears the color buffer bit, and depth buffer bit (for hidden

surface removal and Z buffer test), and it is called from the main().

Display1():

 It plays the Level 1 of the game. It initially sets the the red ball to a position given by

‘up’ variable, and using the Translatef() function it displaces only the y-coordinate of the ball

upwards.

 glutSolidSphere() renders a 3D sphere with radius, slices and stack as parameters.

 While the ‘f’ key is pressed, the function creates an arrow head, and associates a

variable ‘pos’ with it, to translate the arrow towards the right in a single direction. This

variable is incremented continually everytime and called with the Translatef() to redraw the

arrow at new positions.

 If the condition for bounds satisfy, that means collision has occurred, and counter1 is

incremented to register a hit. The flag ‘bang’ is set to 1, so that when encountered during the

next iteration the following changes can take place: position of sphere is reset to 0, bang is

reset to 0 (to prepare for next hit), position of arrow is reset.

 ‘up’ variable is continually incremented to keep the ball moving upwards for a large

number of iterations by calling glutPostRedisplay() everytime. It marks the normal plane of

BULLZ EYE

Dept of CS&E CEC , Bangalore 2010-2011
 10

current window as needing to be redisplayed with the same specifications.

 The counter1 value is checked for every iteration. Once it has reached a value of 3,

Display2() is called to play Level 2 of the game.

Display2():

 It enters the Level 2 of the game. It initially sets the the red ball to a position given by

‘up’ variable, and using the Translatef() function it displaces only the y-coordinate of the ball

upwards.

 Also, it sets the blue balls position and using the Translatef() function it displaces only

the y-coordinate of the ball downwards.

 glutSolidSphere() renders a 3D sphere with radius, slices and stack as parameters.

 While the ‘f’ key is pressed, the function creates an arrow head, and associates a

variable ‘pos’ with it, to translate the arrow towards the right in a single direction. This

variable is incremented continually everytime and called with the Translatef() to redraw the

arrow at new positions.

 If the condition for bounds satisfy, that means collision has occurred, and counter1 is

incremented to register a hit. The flag ‘bang’ is set to 1, so that when encountered during the

next iteration the following changes can take place: position of sphere is reset to 0, bang is

reset to 0 (to prepare for next hit), position of arrow is reset.

 ‘up’ variable is continually incremented to keep the ball moving upwards for a large

number of iterations by calling glutPostRedisplay() everytime. It marks the normal plane of

current window as needing to be redisplayed with the same specifications.

The counter2 value is checked for every iteration. Once it has reached a value of 3, myHit() is

called to display that the player is a winner.

MyHit():

This function is primarily to display text on screen. glBlendFunc defines the operation of

blending when it is enabled. We also set the antialiasing for lines and set the line width to

prepare to draw our text as Stroke Characters.

BULLZ EYE

Dept of CS&E CEC , Bangalore 2010-2011
 11

Drawhit():

It draws text in Stroke Character font. A stroke font is a 3D font. As opposed to bitmap fonts

these can be rotated, scaled, and translated. The GLUT_STROKE_ROMAN font is used here.

The text can be placed anywhere on the screen using Translatef() and scaled to any size as

needed using Scalef().

Instructions():

It creates a separate instruction page where the instructions are displayed on another window

using StrokeCharacter font, and translated to appropriate postions on the screen.

Draw_instruct():

It draws text in Stroke Character font. A stroke font is a 3D font. As opposed to bitmap fonts

these can be rotated, scaled, and translated. The GLUT_STROKE_ROMAN font is used here.

The text can be placed anywhere on the screen using Translatef() and scaled to any size as

needed using Scalef().

Keyboard():

Keyboard is a keyboard callback function which is used to make our program interactive. It

makes the shoot flag = 1 in our program everytime key ‘f’ is pressed, by recognizing it as an

ASCII character.

Main():

The main function performs the required initializations and starts the event processing loop.

All the functions in GLUT have the prefix glut, and those which perform some kind of

initialization have the prefix glutInit.

http://www.lighthouse3d.com/opengl/glut/index.php?bmpfont
http://www.lighthouse3d.com/opengl/glut/index.php?bmpfont

BULLZ EYE

Dept of CS&E CEC , Bangalore 2010-2011
 12

 glutInit(int *argc, char **argv) - parameters are pointers to the unmodified argc

and argv variables from the main function.

 We establish the window's position by using the function glutInitWindowPosition.

 We choose the window size using the function glutInitWindowSize.

 We define the display mode using the function glutInitDisplayMode. GLUT_RGB

- selects a RGBA window. This is the default color mode. GLUT_SINGLE – selects a single

buffer window.

 Each window can be created with glutCreateWindow. The return value of

glutCreateWindow is the window identifier.

 glutDisplayFunc() passes the name of the function to be called when the window

needs to be redrawn.

 glutKeyboardFunc- is notify the windows system which function(s) will perform

the required processing when a key is pressed. This function is to register a callback for

keyboard events that occur when you press a key.

 Creating a menu: glutCreateMenu creates a menu table on a default right click of

mouse. glutAddMenuEntry adds a menu entry to this menu created.

 When we are ready to get in the application event processing loop we enter

glutMainLoop. It gets the application in a never ending loop, always waiting for the next

event to process

Init():

Sets the background color for the game and enables light source to provide the following

lighting effects:

 AMBIENT - light that comes from all directions equally and is scattered in all

directions equally by the polygon.

 DIFFUSE - light that comes from a point source and hits surfaces with an intensity

that depends on whether they face towards the light or away from it.

 SPECULAR - light is reflected more in the manner of a mirror where most of the light

bounces off in a particular direction defined by the surface shape.

 EMISSION - the light is actually emitted by the polygon - equally in all directions

It also sets the Material for the object and enables this option to provide different surface

textures to our objects.

BULLZ EYE

Dept of CS&E CEC , Bangalore 2010-2011
 13

SNAPSHOTS

BULLZ EYE

Dept of CS&E CEC , Bangalore 2010-2011
 14

BULLZ EYE

Dept of CS&E CEC , Bangalore 2010-2011
 15

BULLZ EYE

Dept of CS&E CEC , Bangalore 2010-2011
 16

CONCLUSION

The development of computer graphics has made computers easier to interact with and better

for understanding and interpreting many types of data. Developments in computer graphics

have had a profound impact on many types of media and have revolutionized the animation

and video game industry.

We started with modest aim with no prior experience in any programming projects as this, but

ended up in learning many things, fine tuning the programming skills and getting into the real

world of software development with an exposure to corporate environment. During the

development of any software of significant utility, we are faced with the trade-off between

speed of execution and amount of memory consumed. This is simple interactive application

application. It is extremely user friendly and has the features, which makes simple graphics

project. It has an open source code and no security features has been included. The user is

free to alter the code for feature enhancement. Checking and verification of all possible types

of the functions are taken care. Care was taken to avoid bugs. Bugs may be reported to creator

as the need may be .So, we conclude on note that we are looking forward to develop more

such projects with an appetite to learn more in computer graphics.

http://en.wikipedia.org/wiki/Animation
http://en.wikipedia.org/wiki/Video_game

BULLZ EYE

Dept of CS&E CEC , Bangalore 2010-2011
 17

APPENDIX

#include<stdlib.h>

#include<stdio.h>

#include<string.h>

#include<GL/glut.h>

#include<time.h>

#include<math.h>

//#include<windows.h>

static GLfloat up=-0.2;

static GLfloat pos=-0.2;

int shoot=0,bang=0;

int counter1=0,counter2=0,count=0;

int game,instruct;

char tmp_str[40];

void display2();

void displost();

void init(void)

{

 GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };

 GLfloat mat_shininess[] = { 50.0 };

 GLfloat mat_diffuse[]={ 1.0,1.0,1.0,1.0};

 GLfloat mat_ambient[]={0.0,0.0,0.0,1.0};

 GLfloat light_position[] = { 1.0, 1.0, 0.0, 0.0 };

 glClearColor (0.0, 0.0, 0.0, 0.0);

 glShadeModel (GL_SMOOTH);

 glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);

 glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);

 glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);

 glMaterialfv(GL_FRONT, GL_AMBIENT, mat_ambient);

 glLightfv(GL_LIGHT0, GL_POSITION, light_position);

 glColorMaterial(GL_FRONT_AND_BACK,

GL_AMBIENT_AND_DIFFUSE);

 glEnable(GL_LIGHTING);

 glEnable(GL_LIGHT0);

 glEnable(GL_DEPTH_TEST);

 glEnable(GL_COLOR_MATERIAL);

}

void drawhit(const char * message, int x, int y)

{

 glPushMatrix();

 glScalef(0.3,0.2,0.15);

 glTranslatef(x,y,0);

BULLZ EYE

Dept of CS&E CEC , Bangalore 2010-2011
 18

 while (*message)

 {

 glutStrokeCharacter(GLUT_STROKE_ROMAN,*message++);

 }

 glPopMatrix();

}

void myHit()

{

 glClear(GL_COLOR_BUFFER_BIT);

 glMatrixMode(GL_PROJECTION);

 glLoadIdentity();

 gluOrtho2D(0,200,0,200);

 glMatrixMode(GL_MODELVIEW);

 glClearColor(1.0,0.0,0.5,1.0);

 glColor3f(0.0,0.8,0.80);

 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

 glEnable(GL_BLEND);

 glEnable(GL_LINE_SMOOTH);

 glLineWidth(4.0);

 drawhit("WINNER!!",70,550);

}

void draw_instruct(const char *message, int x, int y)

{

 int j;

 glPushMatrix();

 glScalef(0.1,0.1,0.0);

 glTranslatef(x,y,0);

 while (*message)

 {

 glutStrokeCharacter(GLUT_STROKE_ROMAN,*message++);

 }

 for(j=0;j<10000;j++);

 glPopMatrix();

}

void instructions()

{

 glClear(GL_COLOR_BUFFER_BIT);

 glMatrixMode(GL_PROJECTION);

 glLoadIdentity();

 gluOrtho2D(0,200,0,200);

 glMatrixMode(GL_MODELVIEW);

 glClearColor(1.0,0.7,0.0,1.0);

 glColor3f(1.0,0.5,0.1);

 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

 glEnable(GL_BLEND);

 glEnable(GL_LINE_SMOOTH);

 glLineWidth(4.0);

BULLZ EYE

Dept of CS&E CEC , Bangalore 2010-2011
 19

 draw_instruct("Instructions",600,1850); // change1

 draw_instruct("Right click on mouse",300,1700);

 draw_instruct("to play",300,1500);

 draw_instruct("Press f to shoot",300,1300);

 glFlush();

}

void Write(char *string)

{

 glScalef(0.02,0.02,0.0);

 while(*string)

 glutBitmapCharacter(GLUT_BITMAP_HELVETICA_18,

*string++);

}

void display1()

{

 int i;

 if(counter1==3)

 {

 display2();

 glFlush();

 }

 else

 { int j;

 for(j=0;j<10000;j++);

 glClearColor(1.0,0.7,0.0,1.0);

 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

 glPushMatrix();

 glColor3f(1, 1, 0);

 glRasterPos2f(-0.9, 0.9);

 sprintf(tmp_str, "Arrow count: %d", count);

 Write(tmp_str);

 glPopMatrix();

 if(count>=30)

 glutDisplayFunc(displost);

 glPushMatrix();

 glColor3f(1, 1, 0);

 glRasterPos2f(-0.2, 0.9);

 sprintf(tmp_str, "Score: %d", counter1);

 Write(tmp_str);

 glPopMatrix();

 glPushMatrix();

 glColor3f(1.0,0.0,0.0);

 glLoadIdentity();

 glTranslatef(0.8,-0.869+up,0.0);

 glutSolidSphere(0.15,20,16);

 if(shoot==1)

 {

 glPushMatrix();

 glLoadIdentity();

 glTranslatef(-0.8+pos,0.0,0.0);

 glColor3f(0.0,0.0,0.0);

BULLZ EYE

Dept of CS&E CEC , Bangalore 2010-2011
 20

 glLineWidth(2.0);

 glBegin(GL_LINES);

 glVertex3f(-0.2,0.0,0.0);

 glVertex3f(0.1,0.0,0.0);

 glVertex3f(0.1,0.0,0.0);

 glVertex3f(0.03,0.05,0.0);

 glVertex3f(0.1,0.0,0.0);

 glVertex3f(0.03,-0.05,0.0);

 glEnd();

 glPopMatrix();

 }

 if(bang==1)

 {

 bang=0;pos=-0.2;

 glPushMatrix();

 glLoadIdentity();

 up=0;

 glColor3f(1.0,0.0,0.0);

 glutSolidSphere(1,20,16);

 glPopMatrix();

 }

 glPopMatrix();

 for(i=0;i<200;i=i+20)

 {

 if(pos>=1.74 && up>0.825 && up<0.975)

//collision detection

 {

 counter1 ++;

 for(j=0;j<10000;j++);

 shoot=0;

 pos=-0.2;

 bang=1;

 }

 if(counter1==3)

 count=0;

 up=(up+0.005);

 if(up>2)

 up=0;

 if(shoot==1)

 {

 pos=pos+0.009;

 if(pos>2)

 {

 pos=-0.2;

 shoot=0;

 }

 }

 glutPostRedisplay();

 }

 glFlush();

 }

}

BULLZ EYE

Dept of CS&E CEC , Bangalore 2010-2011
 21

void display2()

{int i;

 if(counter2==3)

 { myHit();

 glFlush();

 }

 else

 {int j;

 for(j=0;j<10000;j++);

 glClearColor(1.0,0.7,0.0,1.0);

 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

 glLoadIdentity();

 glPushMatrix();

 glColor3f(1, 1, 0);

 glRasterPos2f(-0.9, 0.9);

 sprintf(tmp_str, "Arrow count: %d", count);

 Write(tmp_str);

 glPopMatrix();

 if(count>=20)

 glutDisplayFunc(displost);

 glPushMatrix();

 glColor3f(1, 1, 0);

 glRasterPos2f(-0.2, 0.9);

 sprintf(tmp_str, "Score: %d", counter2);

 Write(tmp_str);

 glPopMatrix();

 glPushMatrix();

 glColor3f(1.0,0.0,0.0);

 glLoadIdentity();

 glTranslatef(0.8,-0.769+up,0.0);

 glutSolidSphere(0.10,20,16);

 glColor3f(0.0,0.0,1.0);

 glPushMatrix();

 glColor3f(0.0,0.0,1.0);

 glLoadIdentity();

 glTranslatef(0.4,0.769-up,0.0);

 glutSolidSphere(0.10,20,16);

 glColor3f(0.0,0.0,1.0);

 if(shoot==1)

 {

 glPushMatrix();

 glLoadIdentity();

 glTranslatef(-0.8+pos,0.0,0.0);

 glColor3f(0.0,0.0,0.0);

 glLineWidth(2.0);

 glBegin(GL_LINES);

 glVertex3f(-0.2,0.0,0.0);

 glVertex3f(0.1,0.0,0.0);

 glVertex3f(0.1,0.0,0.0);

 glVertex3f(0.03,0.05,0.0);

 glVertex3f(0.1,0.0,0.0);

BULLZ EYE

Dept of CS&E CEC , Bangalore 2010-2011
 22

 glVertex3f(0.03,-0.05,0.0);

 glEnd();

 glPopMatrix();

 }

 if(bang==1)

 {

 bang=0;pos=-0.2;

 glPushMatrix();

 glLoadIdentity();

 up=0;

 glColor3f(1.0,0.0,0.0);

 glutSolidSphere(1,20,16);

 glPopMatrix();

 }

 glPopMatrix();

 for(i=0;i<200;i=i+20)

 {

 if(pos>=1.75 && up>0.825 && up<0.975)

 {

 counter2 ++;

 for(j=0;j<10000;j++);

 shoot=0;

 pos=-0.2;

 bang=1;

 }

 up=(up+0.005);

 if(up>2)

 up=0;

 if(shoot==1)

 {

 pos=pos+0.009;

 if(pos>2)

 {

 pos=-0.2;

 shoot=0;

 }

 }

 glutPostRedisplay();

 }

 }

 glFlush();

}

void display()

{

 glClearColor(1.0,0.7,0.0,1.0);

 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

 glFlush();

BULLZ EYE

Dept of CS&E CEC , Bangalore 2010-2011
 23

}

void displost()

{

 glClear(GL_COLOR_BUFFER_BIT);

 glMatrixMode(GL_PROJECTION);

 glLoadIdentity();

 gluOrtho2D(0,200,0,200);

 glMatrixMode(GL_MODELVIEW);

 glClearColor(1.0,0.0,0.5,1.0);

 glColor3f(0.0,0.8,0.80);

 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

 glEnable(GL_BLEND);

 glEnable(GL_LINE_SMOOTH);

 glLineWidth(4.0);

 drawhit("you lost!!",70,550);

 glFlush();

}

void indisplay()

{

 glClearColor(1.0,0.7,0.0,1.0);

 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

 instructions();

 glFlush();

}

void keyboard(unsigned char key,int x,int y)

{

 if (key=='f')

 {

 shoot=1;

 count++;

 }

}

void choose(int i)

{

 switch(i)

 { case 1: exit(0);

 case 2: glutDisplayFunc(display1);

 break;

 case 3: glutDisplayFunc(display2);

 break;

 default:exit(0);

BULLZ EYE

Dept of CS&E CEC , Bangalore 2010-2011
 24

 }

}

int main(int argc,char **argv)

{

 glutInit(&argc,argv);

 glutInitDisplayMode(GLUT_DEPTH|GLUT_RGB);

 glutInitWindowSize(1500,1500);

 glutInitWindowPosition(0,0);

 instruct=glutCreateWindow("Instructions");

 init();

 glutDisplayFunc(indisplay);

 glutInitDisplayMode(GLUT_DEPTH|GLUT_RGB);

 glutInitWindowSize(1000,1000);

 glutInitWindowPosition(0,0);

 game=glutCreateWindow("Proj");

 init();

 glutDisplayFunc(display);

 glutKeyboardFunc(keyboard);

 glutCreateMenu(choose);

 glutAddMenuEntry("Quit",1);

 glutAddMenuEntry("PlayLevel1",2);

 glutAddMenuEntry("PlayLevel2",3);

 glutAttachMenu(GLUT_RIGHT_BUTTON);

 glutMainLoop();

 return 0;

}

BULLZ EYE

Dept of CS&E CEC , Bangalore 2010-2011
 25

BIBLIOGRAPHY

1.Interactive Computer Graphics: A Top Down Approach with OpenGL- Edward Angel, 5
th

Edition, Addison-Wellesley,2008

2.Online tutorials for game development at NeHe productions.

3.OpenGL Red Book and Blue Book for reference.

4. www.opengl.org for OpenGL tutorials

http://www.opengl.org/

