Logic Design 10CS33

LOGIC DESIGN

(Common to CSE & ISE)

Subject Code: 10CS33 [.LA. Marks : 25
Hours/Week : 04 Exam Hours: 03
Total Hours : 52 Exam Marks:
100

PART-A

UNIT T 1 7. Hours

Digital Principles, Digital Logic: Definitions for Digital Sgnals, Digital Waveforms,
Digital Logic, 7400 TTL Series, TTL Parameters The Basic Gates: NOT, OR, AND,
Universal Logic Gates: NOR, NAND, Positive aNdgative Logic, Introduction to HDL.

UNIT T 2 6 Hours
Combinational Logic Circuits

Sumof-Products Method, Truth Table to Karnaugh Map, Pairs. Quads, and Octets, Karnaugh
Si mpl i f i c adareo rCenditionsD oPmoduaf-sums Method, Produdf-sums
implifications, Simplification by QuinéMcClusky Method, Hazards and Hazard Covers,
HDL Implementaibn Models.

UNIT 7 3 6 Hours
Data-Processing Circuits: Multiplexers, Demultiplexers, -df-16 Decoder, Encoders,
Exclusiveor Gates, Parity Generators and -Checkers, MagnitudeComparator, Programmable
Array Logic, Programmable Logic Arrays, HDL

Implementation of Data Processing Circuits

UNIT 7 4 7 Hours
Clocks, Flip-Flops: Clock Wavefarms, TTL Clock, Schmitt Trigger, Clocked D FLIP
FLOP, Edgeriggered D FLIPFLOP, Edgeriggered JK FLIPFLOP, FLIRFLOP Timing,

JK Masterslave FLIRFLOP, Switch Contact Bounce Circuits, Various Representation of
FLIP-FLOPs, Analysis of Sequential Circuits, HDL Implementation of FELEOP

PART-B

UNITT5 6 Hours
Registers: Types of Registers, Serial mSerial Out, Serial In Parallel out, Paikel In -
Serial Out, Parallel In- Parallel Out, Universal Shift Register, Applications of Shift
Registers, Register Implementation in HDL

UNIT T 6 7 Hours

Counters: /Asynchronous Counters, Decoding Gates, Synchronous Counters, Changing the
Courter Modulus, decade Counters, Presettable Counters, Counter Design as a Synthesis
problem, A Digital Clock, Counter Desigrsing HDL

Dept. Of CSE, SJBIT Pagel

Logic Design 10CS33

UNIT 7 7 7 Hours

Design of Synchronous and Asynchronous Sequential Circuitesign of Synchronous
Sequentl Circuit: Model Selection, State Transition Diagram, State Synthesis Table, Design
Equations and Circuit Diagrartimplementation using Read Only Memory, Algorithmic State
Machine, State Reduction Technique. Asynchronous Sequential Circuit: Analysis of
Asynchronous Sequential Circuit, Problems with Asynchronous Sequential Circuits, Design
of Asynchronous Sequential Circuit, FSM Implementation in HDL

UNIT 7 8 6 Hours
D/A Conversion and A/D Conversion:Variable, Resistor Networks, Binary Ladde¥A
Converters, D/A Accuracy and Resolution, A/D Conver&multaneous Conversion, A/D
ConverterCounter Method, Continuous A/D Conversion, A/D Techniques;Slogle A/D
Conversion, A/D Accuracy and Resolution

Text Books:

1. Donald P Leach, Albert PaMalvino & Goutam-Saha: Digital Principles and
Applications, 7th Edition, Tata McGraw Hill, 2010.

Reference Books:

1. Stephen Brown, Zvonko Vranesic: Fundamentals of Digital Logic Design with VHDL, 2nd
Edition, Tata McGraw Hill, 2005.

2. R D Sudhaker Saml lllustrative Approach to Logic Design, Sanguipearson, 2010.

3. Charles H. Roth: Fundamentals of'Logic Design, Jr., 5th Edition, Cengage Learning, 2004.
4. Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss: Digital Systems Principles and
Applications,10th Edition, Pearson Education, 2007.

Dept. Of CSE, SJBIT Page?

Logic Design 10CS33

INDEX SHEET
Unit No. Unit Name Page No.

| Digital Principles, Digital Logic 4-15
1 Combinational Logic Circuits 16-29
11 Data -Processing Circuits 30-42
\VJ Clocks, Flip -Flops 43-50
V Registers 51-54
VI Coun ters 55-60
VI Design of Synchronous and 61-76

Asynchronous Sequential Circuits
VI D/A Conversion and A/D 77-84

Conversion

Dept. Of CSE, SJBIT Page3

Logic Design 10CS33

Unit-1: Digital Principles, Digital Logic
Contents:
Definitions for Digital Signals
Digital Waveforms
Digital Logic 7400TTL Series, TTL Parameters The Basic
Gates: NOT, OR, AND,
Universal Logic Gates: NOR, NAND
Positive and Negative Logic

Introduction to HDL.

Dept. Of CSE, SJBIT Paget

Logic Design 10CS33

Definitions of Analog vs Digital signals

An Analog signalis any continuous signal for which the time varyiegttire (variable) of

the signalis a representation of some other time varying quantity, i.e., analogous to another
time varying signal. It differs from a digital signal in terms of small fluctuations in the signal
which are meaningful.

A digital signal uses discrete (discontinuous) values. By contrast;digital (or analog)
systems use a continuous range of values to represent information. Although digital

representations are discrete, the information represented can be 'either discrete, such as
numbersor letters, or continuous, such asunds images, and other measurements of

continuous systems.

Analog Signal

- F

Digital Signal

Comparison chart
Analog Digital

Converts analog waveforms into se
Analog technology recordsaveformsof numbers and records them. The

Technology.: as they are. numbers are converted into voltage
stream for representation.
. Uses continuous range of values to Uses discrete or discontious values
Representatiol . : . .
represent information. to represent information.
Can be used in varioe®@mputing
. platforms and under operating syste . ,
Uses: like LinuxUnix, Mac OS and Computing and electronics
Windows.
Anglog S|gnal_ IS a continuous SlgnalDigital signals are discrete time
.) which transmits information as . o
Signal: : . signalsgeneratedby digital
response to changes in physical .
modulation.
phenomenon.
Clocks: Analog clocks indicate time using Digital clocks use numeric

angles. representation to indicate time.

Computer: Analogcompuer useshangeable Digital computers represent changi
continuous physical phenomena surquantities incrementally as and wh

Dept. Of CSE, SJBIT Pages

Logic Design 10CS33

Analog Digital

as electrical, mechanical, hydraulic their values change.
guantities so as to solve a problem.

Waveforms in digital systems

In computer architecturand otherdigital systems, avaveformthat switches between two
voltage levels representing the two states &oaleanvalue (0 and 1) is referred-to as a
digital signal even thouglit is an analog voltage waveform, since it is interpreted in terms of
only two levels.

The clock signalis a special digital signal that is usedsignchronizedigital circuits. The
image shown can be considered the waveform of a clock signal. Logic changes are triggered
either by the rising edge or the falling edge.

The given diagram is an exampletbé practical pulse and therefore we have introduced two
new terms that are:

1 Rising edge: the transition from a low voltage (level 1 in the diagram) to a high
voltage (level 2).
1 Falling edge: the transition from a high voltage to a low one.

(2]
(D
0
. @ @ ONO
TTL Series
Normally Binary Logic Values.are are defined as eithergci ¢ 616 or Logic 00
the level of the output voltage.. Another additional (intermedie v al ue) i's the
val ued. Logic levels can either be Positive

In TTL Logic Levels. (positive logic) logic high or Logic 1 is betwe@yV¢ VH ¢ 5V.
Logic 606 or | owVL 0@4\cand te didetnedwale is betwedhd
V <undefined< 2.4 V/

Logic families:are classified based on either the devices used ,example: diodes ,transistors
etc. or the structure of Digital Circuits , example: ECL ,Wired logic etc.

The following are the examples of logfamilies based on the devices used and their

structure,

A DTL :Diode Transistor Logic
A RTL :Resistor Transistor Logic

A TTL :Transistor Transistor Logic
Dept. Of CSE, SJBIT Pageb

http://en.wikipedia.org/wiki/Computer_architecture
http://en.wikipedia.org/wiki/Digital
http://en.wikipedia.org/wiki/Waveform
http://en.wikipedia.org/wiki/Boolean_logic
http://en.wikipedia.org/wiki/Clock_signal
http://en.wikipedia.org/wiki/Synchronization

Logic Design

A ECL

:Emitter Coupled Logic

A CMOS:Complementary MOSFET Logic

10CS33

The various logic families differ in the gent driving capabilities,Logic Levels, propagation
delays and a few other other paramet@itse Comparison of TTL and CMOS is clearly
illustrated in the following table as an example of differences in the logic families:

TTL CMOS
A Faster A Low power consumption
A Stronger drivl A Simpler to make
cgpability A Greater packing density
A

Better noise immunity

Integration Levels:

The devices greatly differ in the density of fabrication

ie the levels of integration

used.Depending on the number of transistors/diodes/gased in the chip they are broadly
classified as :

A

To Do Do Io I

SSI -small scale integration

MSI -medium scale integration

LSI -large scale integration

VLS| -very large scale integration

ULSI -ultra large scale integration

GSI -giant scale integration

SSI 1-100 <12 Logic gatesOp-amps

IMSI 100-1000 12-99 Registers Filters

LSI 1000610000 1000 8 bit processor, A/D converter

VLSI 10k gates/chip 16,32 bit processor
256KB memory

Dept. Of CSE, SJBIT

Page7

Logic Design 10CS33

DS processor

ULSI 10k gates/chip 64 bit processor

8 MB memory

Image processor

GSI

1M gates/chip 64 MB_memory

multiprocessor

Speed of Operation:

As signals propagate through the various gates there is a finite time required for the signal
change to occur, eg the time rewgui for the input high-of a n inverter to change to logic

low at the output. This implies that there is a limitation on the no of times the output can
change or the speed of operation of the gate. The parameters of importance for the speed
of operation are

A tLH- low to high rise time (tr) : it is defined as the time interval for the signal to rise
between 10% to 90% of Vdd

A tHL- high to low time or fall time/(tf): it is-defined as the time for signal to fall from

A 90%Vdd to 10%Vdd

The switching is fast ith
tmin=thl+tlh

Therefore maximum switching freq is achieved when fmax=1/tmin

The switching speed..is limited due to the effect of capacitance at the base emmiter

/collector and ground etc.
For eg: if thl =0.5nsec, tth=1.0 nsec

Then tmin =15 nsecAnd fmax=1/tmin=666.67Mhz

Propagation delay:

It is the physical delay as the logical signal propagates through the gates. It differs depending

on whether the output transition goes from cutoff to saturation or from saturatiorai. cut

Dept. Of CSE, SJBIT

Pages

Logic Design 10CS33

=
o
S
o
|
'_i:"__
Z

tpa=max {tpyL, trLn)

As the loads are connected to gates to realize the necessary logic operations the output signal
levels are affected. This is because there is a current flow between the gates due to which
there is power consumption. Thus the nemdf circuits(similar gates) that can be connected

to the gates gets limited.

A Fanout of a gate is the number of gates driven by that gate i.e the maximum number
of gates (load) that can exist without impairing the-normal operation of the gate.

A Fanin of a gate is the number of inputs that can be connected to it without impairing
the normal operation of the gate.
Overview of Basic Gates and Universal Logic Gates

A logic gate is an electronic circuit/device which makes the logical decisions. To arrive at
this decisions, the most common logic gates used are OR, AND, NOT, NAND, and NOR
gates. The NAND and NOR gates are called universal gates. The exclgigate is
another logic gate which can be constructed using AND, OR and NOT gate.

Logic gates have or@ more inputs and only one output. The output is active only for certain
input combinations. Logic gates are the building blocks of any digital circuit. Logic gates are
also called switches. With the advent of integrated circuits, switches have besedepy

TTL (Transistor Transistor Logic) circuits and CMOS circuits. Here | give example circuits
on how to construct simples gates.

AND Gate

The AND gate performs logical multiplication, commonly known as AND function. The
AND gate has two or more inmutind single output. The output of AND gate is HIGH only
when all its inputs are HIGH (i.e. even if one input is LOW, Output will be LOW).

If X and Y are two inputs, then output F can be represented mathematically as F = X.Y, Here

dot (.) denotes the ANDperation. Truth table and symbol of the AND gate is shown in the
figure below

Dept. Of CSE, SJBIT Paged

Logic Design 10CS33

OR Gate

The OR gate performs logical addition, commonly knewn as OR function. The OR gate has
two or more inputs and single tput. The output of OR gate‘is HIGH only when any one of
its inputs are HIGH (i.e. even if one input is HIGH, Output will be HIGH).

If X and Y are two inputs, then output F can’be represented mathematically as F = X+Y. Here
plus sign (+) denotes the OR oaton. Truth table and symbol of the OR gate is shown in
the figure below.

YF=(X+Y)
0 00
0 11
1 01
1 11
NOT Gate

The NOT gate performs the basic logical function called inversion or complementation. NOT
gate is also called imvter. The purpose of this gate is to convert one logic level into the
opposite logic level. It has one input and one output. When a HIGH level is applied to an
inverter, a LOW level appears on its output and vice versa.

Dept. Of CSE, SJBIT PagelO

Logic Design 10CS33

If X is the input, then output F nébe represented mathematically as F = X', Here apostrophe
() denotes the NOT (inversion) operation. There are a couple of other ways to represent
inversion, F= !X, here ! represents inversion. Truth table and NOT gate symbol is shown in
the figure below.

NAND Gate

NAND gate is a cascade of AND gate and NOT gate;as shown in the figure below. It has two
or more inputs and only one output. The output.of NAND.gate is HIGH when any one of its
input is LOW (i.e. even if one input is LOW, @uit will be HIGH).

NOR Gate

NOR gate is.a cascade of OR gate and NOT gate, as shown in the figure below. It has two or
more inputs and only one output. The output of NOR gate is HIGH when any all its inputs are
LOW (i.e. even if one input is HIGH, output will be LOW).

Dept. Of CSE, SJBIT Pagell

Logic Design 10CS33

1
0
0
0

XOR Gate

An ExclusiveOR (XOR) gate is gate with two or three or more inputs and one output. The
output of a tweinput XOR gate assumes a HIGH statenke and only one input assumes a
HIGH state. This is equivalent to saying that the output is HIGH if either input X or input Y
is HIGH exclusively, and LOW when both are 1 or 0 simultaneously.

If X and Y are two inputs, then output F can be representedematically as F = 8,
Here @®denotes the XOR operationXy and is equivalent to X.Y' + X'.Y. Truth table and
symbol of the XOR gate is shown in the figure below.

XNOR Gate

An ExclusiveeNOR (XNOR) gate is gate wh two or three or more inputs and one
output.”The output of a twainput XNOR gate assumes a HIGH state if all the inputs
assumes same state. This is equivalent to saying that the output is HIGH if both input X and
input Y is HIGH exclusively or same agput X and input Y is LOW exclusively, and LOW
when both are not same.

Dept. Of CSE, SJBIT Pagel2

Logic Design 10CS33

If X and Y are two inputs, then output F can be represented mathematically asbfy = X
Here@®denotes the XNOR operationXy and is equivalent to X.Y + X'.Y'. Truth table and
symbol ofthe XNOR gate is shown in the figure below.

Boolean Laws and Theorems
A. Axioms
Consider a se% = { 0. 1}Consider two binary operations, + and . , and one unary operatjon,
that act on these elemenS, .,+, --, 0, 1]is.called a switching algebra that satisfies the
following axioms S.
B. Closure
If X €S and YES then X.YES
If X €S and YES then X+Y&ES
C. Identity

an identity O for + such that X+ 0 = X
an identity 1 for . suchithat X . 1 = X

D. Commutative lkaws

X+Y=Y+X
XY=YX

E. Distributive Laws
X(Y+Z)=XY+XZ

X+Y.Z=(X+Y).(X+2)

Dept. Of CSE, SJBIT Pagel3

Logic Design 10CS33

Idempotent Law

X+X=X

XX=X

DeMorgan's Law
(X+Y) =X".Y', These can be proved by the use of truth tables.

Proofof X +Y)' =X".Y'

v v XV
0 0 i

Bk O O

1 1 0
0 1 0
1 1 0
0 0 1 1 1
0 1 1 0 0
1 0 0 1 0
1 1 0 0 0

The two truth tables are identical, and so the'two expressions are identical.
(X.Y) = X"+ Y', These can be proved by the use oittitables.

Proof of (X.Y) =X"+Y'

(X.Y)
0 0 0 1

0 1 0 1
1 0 0 1
1 1 0

1

0 0 1 1 1
0 1 1 0 1
1 0 0 1 1
1 1 0 0 0
Introduction:to HDL: Hardware Description Language

HDL is a language that describes the hardwafraligital systems in a textual fornit
resembles a programming language, but is specifically oriented to describing hardware
structures and behaviors.

Dept. Of CSE, SJBIT Pagel4d

Logic Design 10CS33

The main difference with the traditional pro
extensiveparallel operations whereas traditional ones represents mostly serial operations.
HDL can be used to represent logic diagrams, Boolean expressions, and other more complex
digital circuits
There are two standard HDLOGOs that are suppor
A VHDL (VeryHigh-Speed Integrated Circuits Hardware Description
Languagé - Sometimes referred to as VHSIC HDL, this was developed from
an initiative by US. Dept. of Defense.
A Verilog HDL i developed by Cadence Data systems and later transferred to a
consortium calle®pen Verilog InternationalOVI).

Verilog: Verilog HDL has a syntax that describes precisely the legal constructs that can be
used in the language.
E It uses about 100 keywords piefined, lowercase; identifiers that define the
language constructs.
E Exampe of keywordsmodule, endmodule, input, output-wire, and, or,,redt.,
E Any text between two slashes (/) and the end of line is interpreted as a comment.
E Blank spaces are ignored and names are case sensitive.

A moduleis the building block in Veriloglt is declared by the keywonshoduleand is
always terminated by the keyworhdmoduld€each. statement is terminated with a
semicolon, but there is no senwvlon afterendmodule

A —
r-—-:\ i
ﬁg-/ -

e

S

B |

C;@c)
HDL Example
module smpl_circuit(A,B,C,x,y);
input A,B,C;
output Xx,y;
wire e;
and gl(e;AB);
not g2(y,C);
or g3(x,e.y);
endmodule

Dept. Of CSE, SJBIT Pagel5

Logic Design 10CS33

Unit-2 : Combinational Logic Circuits

Contents:

Sumof-Products Method

Truth Table to Karnaugh Map

Pairs Quads, and Octets

Karnaugh Si mp lcaré Gonddiadns ons, Donoa.t
Product-of-sums

Method, Produebf-sums simplifications

Simplification by QuineMcClusky

Method, Hazards and Hazard Covers

HDL Implementation Models.

Dept. Of CSE, SJBIT Pagel6

Logic Design 10CS33

DeMorgans Laws are applicable for any number of variables.
Boundedness Law

X+1=1

X.0=0

Absorption Law

X+ (X.Y)=X

X.(X+Y)=X

Elimination Law
X+(X.Y)=X+Y

XX +Y)= XY

Unigue Complement theorem
IfX+Y=1and X.Y =0then X=Y"

Involution theorem

Associative Properties
X+(Y+2)=(X+Y)+Z

X.(Y.Z)=(X.Y)/Z

PRINCIPLE OF DUALITY

One can transform t he gi ven expression
well as the identity elements 0 and 1. Then the expression will be referred as dual
of eachother. This is known as the principle of duality.

Example x+x =1 then the dual expression is
x A x = 0

A procedure which will be used to write Boolean expressions form truth table is
known as canooal formula. The canonical formulas are of two types

Dept. Of CSE, SJBIT Pagel7

Logic Design 10CS33

1. Minterm canonical formulas
2. Maxterm canonical formulas

MINTERM CANONICAL FORMULAS

Minterms are product of terms which represents the functional values of the variables
appear either in complemented or un complemented form.
Ex:f(x,y,z) =Xyz+Xxyz+Xxy z

The Boolean expression whichis represented above is also known as SOP or
disjunctive formulaThe truth table is
Xy z f

000
001
010
011
100
101
110

o o O P O +» O

111

m- NOTATION

To simplify the writing of a. minterm in canonical formula for a function is
performed using the symlbmi. Where i stands for the row number for which the
function evaluates to 1.
The mnotation for 3 variable an function Boolean function

f(x,y,2) =xyz+Xxyz+xyzis written as

f(x,y,z) = ml+ m3 + m4 or

f(x,y,z) =dm(1,3,4)

Dept. Of CSE, SJBIT Pagel8

Logic Design 10CS33

A three variable m- notation truth variable

Xyz Decimal [Minterm |m-notation
designator of rov
00O 0 Xy z mO
001 1 Xy z ml
010 2 Xy z m2
011 3 Xy z m3
100 4 Xy z m4
101 5 Xy z m5
110 6 Xy z m6
111 7 Xy Z m7

MAXTERM CANONICAL FORM

Maxterm are sum terms where the variable appear once either in complement or un
complemenforms and these terms corresponds to a-funttialae representing O.

Ex. f(xy,z) =(x+y+z)(x+ty+z)(x+y+2z)

= OM(0, 2,5)
= MO, M2, M5

KARNAUGH MAPS (K - MAP)

A method for graphically determining implicants angmplicates of a
Boolean function was developed by Veitch and modified by Karnaugh . The
method involves a diagrammatic representation of a Boolean algebra. This graphic
representation is called map

It is seen that the “truth table can be used to represent complete function of n
variables. Since each variable can have value of 0 or 1. The truth table has 2n
rows. Each rows of the truth tablensist of two parts (1) antaple which
corresponds to. an. assignment to thamables and (2) a functional value.

A Karnaugh map (khap) is a geometrical configuration of 2n cells
such that each of the -tuples corresponds to arow of a truth table
uniquely locates a cell on the map. The functional values assigned to- the n
tuples ‘are placed as entries in the cells, i.,e.orO 1 are placed in the

associated cell.

An significant about the construction of-nkap is the arrangement of the
cells. Two cells are physically adjacent within the configuration if andifonly
their respective +tuples differ in exactly by one element. So that the Boolean

Dept. Of CSE, SJBIT Pagel9

Logic Design 10CS33

law x+x=1 cab be applied to adjacent cells. Ex. Twotu@des (0,1,1) and
(0,1,00 are physically adjacent since thagaed vary by one element.

One variable: One variable needs a map Jf 2 cells map as shown below
x f(x)
0 f(0)
1 f(1)

TWO VARIABLE : Two variable needsa map of=24 cells

x y f(xy)
0 0 f£(0,0)
01 f0,)
1 0 f(1,0)
11 f(1,1)

THREE VARIABLE : Three variable needs a map Gf=3 cells. The arrangement of cells
are as follows

Xxyz f(xy,z)
000 f(0,0,0)
001 f(0,0,1)
010 f(0,1,0)
011 f(0,1,1)
100 f(1,0,0)
101 f(1,0,1)
110 f(1,1,0)

111 f1,1,1)

FOUR VARIABLE /: Four variable needs a map df=216 cells. The arrangement of cells are
as follows

w xyz fwxy,z) WXy z f(w,X,y,2)
0 0 0 0 1(0;0,0,0) 1010 f(1,0,1,0)
0001 f0,,0,1) 1011 f(1,0,1,1)
0010 f(®21,0) 1100 f(1,1,0,0)
0011 (0,0,1,1) 1101 f(1,1,0,1)
0100 f(0,1,0,0) 1110 f(1,1,10)

Dept. Of CSE, SJBIT Page20

Logic Design 10CS33

0101 f(0L,0,1) 1111 f(1,1,1,1)
0110 f0,1,1,0)
0111 f0,1,1,1)
1000 f(1,0,00)
1001 (1,0,0,1)

Four variable Kmap.

0000 (0001 (0011 |[0010

0100 |0101 0111 |1010

1100 1101 [1111 (1110

1000 {1001 1011 |[1010

Ex. Obtain the minterm canonical formula of the three variable problem given below
f(X,y,2) =Xyz+Xyz+Xyz+xyz

f(x,y,z) =am(0,2,4,5)

00 01 11 11
1 0 0 1
1 1 0 0

Dept. Of CSE, SJBIT Page21

Logic Design 10CS33

Ex. Express the minterm canonical formula of the four variableai given belw

yz
00 01 11 10
WX 1 1 0 1
1 1 0 0
0 0 0 0
1 0 0 1

f(W,X,y,2) =WXYZ+WXYZ+WXYZ+WXF+WXYZ+WXY Z
f(w,x,y,z) =a m(0, 1, 2, 4, 5,
Ex. Obtain the max term canonical formula
(POS) of the three variable problem stated above
f(xy,z) = (x+y+z)(x +y +z)(x +y +2)
(x+y+2)
f(x,y,z2) =PM(1,3,6,7)
Ex Obtain the max term canonical formula
(POS) of the four variable problem stated above
flwxy,z) =W +x+y+2)(W tx+y+2) (W +xX+y+2)
W +x+y+z) (Wt x+y+2z) (W +X+y+2)
W +x+y+z)(w +x+y+2z) (W +x+y+2)
f(w,x,y,z) = PM(3,6,7,9,11,12,13,14,15)
PRODUCT AND SUM TERM REPRESENTATION OF K i MAP

1.The importance of#nap lies in the fact that it is possible to determineirtipdicants
and i mplicates of a function from t he
of aKma p has entry -gelf and thad ef O,s isiraferredracdlle r e e d

2. The/construction ofnanvariable map is such that any set -oells or Gcells which
form a 2x2°rectangular grouping describing a product or sum term with wariables , where a
and b are ncenegative no.s

3. The rectangular grouping of thedenensions referred as Subcubes. The subcubes must
be the power of 2 i.e.® equals to 1,2,4,8 etc.

Dept. Of CSE, SJBIT Page22

pat

Logic Design 10CS33

4. For three variable and four variablem&p it must be remembered that the edges are also
adjacent cells or subce hence they will be grouped together.

5. Given an #variable map with a pair of adjacent-cdlls or Ocellscan result 4
variable.Where as if a group of four adjacent sulxubee formed than it can resui2n
variables. Finally if we have eight adjacent cells are grouped may r8suariable
product or sum term.

Typical pair of subcubes

Typical group of four adjacent subcube

Typical group of four adjacent subcubes.

Dept. Of CSE, SJBIT Page23

Logic Design 10CS33

Typical group of eight adjacent subcubes.

USING K-MAP TO OBTAIN MINIMAL “"EXPRESSION FOR COMPLETE
BOOLEAN FUNCTIONS :

How to obtain a minimal expression of SOP or POS of given function is discussed.
PRIME IMPLICANTS and K -MAPS :
CONCEPT OF ESSENTIAL PRIME IMPLICANT

00 01 11 10
0 0 0 1
0 0 1 1

f(x,y,2)= xy+yz

Dept. Of CSE, SJBIT Page24

Logic Design 10CS33

ALGORITHM TO FIND ALL PRIME IMPLICANTS
A General procedure is listed below

1. Forannvari abl e ma p ma k e 2n entries of 16s.
2. Assignl=n,so that find out biggest rectangular group with dimension 2ax22 n-1.

3. If bigger rectangular group is not possible 1 =1form the subcubes which

consist of all the previously obtained subcube repeat the steptill alicle | | or O0606s
covered.

4. Remaining is esntial prime implicants
1. Essential prime implicants
2. Minimal sums
3. Minimal products
MINIMAL EXPRESSIONS OF INCOMPLETE BOOLEAN FUNCTIONS
1. Minimal sums
2. Minimal products.
EXAMPLE TO ILLUSTRATE HOW TO OBTAIN ESSENTIALPRIMES
1. f(x,y,z) =am(0,1,5,7)
Ans f(x,y,z) =xz + Xy
2. f(w,x,y,z) =am(1,2,3,5,6,7,8,13)
Ans. f(W,X,y,Z) =W zZ +W y+Xyz+wW X Yy Z
MINIMAL SUMS
f(w,x,y,2)=am(0,1,2,3,5,7,11,15)
MINIMAL PRODUCTS
F(w,x,y,2)Am(1,3,4,5,6,7,11,14,15)
MINIMAL EXPRESSIONS OF INCOMPLETE BOOLEAN FUNCTIONS

f(W,X,Y,2)=am(0,1,3,7,8,12) +dc(5,10,13,14)

QUINE 7 McCLUSKEY METHOD

Using K-maps for simplification of Boolean expressions with more than six variables becomes
a tedious and difficult task. Therefore abular method illustrate below can be used for the
purpose.

ALGORITHM FOR GENERATING PRIME IMPLICANTS
The algorithm procedure is listed below

1.Express each minterm of the function in its binary representation.
Dept. Of CSE, SJBIT Page25

Logic Design 10CS33

2. List the mintans by increasing index.
3. Separate the sets of minterms of equal index with lines.
4. Let i=0.

5. Compare each term of index | with each term of index I+1. For each pair of terms that can
combine which has only one bit positiagifference.

6. Increase I by 1 and repeat step 5. The increase of | continued until all terms are compared.
The new list containing all implicants of the function that have one lessvariable than those
implicants in the gesrating list.

7. Each section of the new list formed has terms of equal index. Steps 4,5, and 6 are repeated on
this list to form another list. Recall that two terms combine only if they have their dashes in
the same relativeogitions and if they differ in exactly one bit position.

8. The process terminates when no new list is formed .
9. All terms without check marks are prime implicants.
Example: Find all the prime implicants of the function
f(w,x,y,z) = am(0,2,3,4,8,10,12,13,14)

Step 1: Represent each minter in it fotation

no. minterm 1-0 notation index
0 WXYZ 0000 0
2 WXYz 0010 1
3 WXYz 0011 2
4 WXYZ 0100 1
8 WXYz 1000 1
10 WXYZ 1010 2
12 WXYZ 1100 2
13 W XYz 1101 3
14 WXYZ 1110 3

Dept. Of CSE, SJBIT Page26

Logic Design

Step 2: List the minterm in increasing order of their index.

No. WXYyz index
0 0000 Index O
2 0010
4 0100 Index1
8 1000
3 0011
10 1010 Index 2
12 1100
13 1101
14 1110 Index 3

Wxyz index
0.2 0010
0,4 07100
0,8 - 000

00 1i
2,3

- 010
2,10 100
4.12 1010
8.10 1700
8,12 1710
10,14 1107
12,13 11-0
12,14

Dept. Of CSE, SJBIT

10CS33

Page?27

Logic Design 10CS33

WXYZ
(0, 2, 8, 10) 0 _ o
0, 4,8,12) 0 0O(index)
(8,10,12,14) 1 0(index1)

FW,X,y,2)=XZ+y Z+W zZ+W Xy +W X Z

PETRI CKO6 S METHOD OF DETERMI NING | RREDUNDANT
FIND THE PRIME IMPLICANTS AND IRREDUNDANT EXPRESSION
F(W,X,Y,2)=aM(0,1,2,5,7,8,9,10,13,15)
A=XY ,B=X Z C=YZ D=XZ

P = (A+B)(A+C) (B)(C+D)(D)(A+B)(A+C)(B)(C+D)(D)

P = (A +C)(BD) = ABD +BCD
F1(W,X,Y,Z)= ABD =X Y +X Z +X Z
F2(W,X,Y,Z)=BCD=XZ+YZ+XZ
DECIMAL METHOD FOR OBTAINING, PRIME IMPLICANTS

The prime implicants can be obtadh for decimal \number represented minterms.In this procedure
binary number are not used to find out prime implicants

f(w, x,y,z) =4m(0,5,6,7,9,10,13,14,15)
fsop= Xy +Xz+Xyz+wyz+w X Y z
MAP ENTERED VARIABLE(MEV)

It is graphical approachsing kmap to have a variable of order n. Where in we are usingnagK
of n-1 variable while map is entered with ouput function and variable.

f(w,x,y.z) = am(2,3,4,5,13,15) +dc(8,9,10,11)
Ans.fsop=w z +Xy.+ WXy
HDL IMPLEMENTATION METHOD S

A module can be described in any one (or a combination) of the following modeling techniques.
A Gate-level modelingusing instantiation of primitive gates and user defined modules.
This describes the circuit by specifying the gates and how they are cethnect
with each other.

Dataflow modeling using continuous assignment statements with the keyword

assign
This is mostly used for describing combinational circuits.

A Behavioral modelingusing procedural assignment statements with keyalwveys

>

Dept. Of CSE, SJBIT Page28

Logic Design 10CS33

This is usedd describe digital systems at a higher level of abstraction.

Gatelevel modelingHere a circuit is specified by its logic gates and their interconnections.
E It provides a textual description of a schematic diagram.
E Verilog recognizes 12 basic gates aslpfimed primitives.

A 4 primitive gates of 3tate type.

A Other 8 are: and, nand, or, nor, xor, xnor, not, buf

/IGatelevel hierarchical description ofldit adder
module halfadder (S,C,x,y);

input x,y;

output S,C;

//Instantiate primitive gates

xor (S,x,y);

and (C,x.y);
endmodule

Dataflow Modeling: Dataflow modeling uses continuous,assignments and the keyagsignA
continuous assignment is a statement that assigns a value toTAeealue assigned to the net is
specified by an expssion that uses operands and operators.

/IDataflow description of a-B-4-line decoder
module decoder_df (A,B,E,D);
input A,B,E;
output [0:3] D;
assignD[0] = ~(~A & ~B & ~E),
D[1] = ~(~A & B & ~E),
D[2] = ~(A & ~B & ~E),
D[3] =~(A & B & ~E);
endmodule

Behavioral Modeling Behavioral modeling represents digital circuits at a functional and algorithmic
level.
E Itis used mostly to describe sequential circuits, but can also be used to describe
combinational ciraits.
E Behavioral descriptions use the keywaidiaysfollowed by a list of procedural assignment
statements.
E The target output.of procedural assignment statements must bered thata type.
E A regdata type retains its value until a new value is assigned
//[Behavioral description of 20-1-line multiplexer

modulemux2x1_bh(A,B,select,OUT);
input A,B,select;
output:QUT;
reg OUT,
always @(select or A or B)
if (select ==1) OUT = A,
else OUT = B;
endmodule

Dept. Of CSE, SJBIT Page29

Logic Design 10CS33

Unit-3 :Data-Processing Circuits

Multiplexers

Demultiplexers

1-of-16 Decoder

Encoders

Exclusiveor Gates

Parity Generators and Checkers
MagnitudeComparator
Programmable Array Logic
Programmable Logic Arrays, HDL

Implementation of Data Processing Circuits

Dept. Of CSE, SJBIT Page30

Logic Design 10CS33

Decoder

A Decoder is a multiple input ,multiple output logic circuit.The block diagram of a decoder is as
shown below.

—_— o n-to-2" o Jr—
" —] . DEC : |—
= — 1. - — e
- =8
& B
= &
— sy P o ——

An n-to-=2"line
decoder symbol.

The most commonly used decoder isian2' decoder which ha n inputs andQutput lines .

3-to-8 decoder logic diagram

[>o =) Zo=Nowixa

Xo l

Zi=XoX1Xz2

=D, S
X1 l Dc —|D— Zo—= XoX1Xz2
= gy

Z3=XoX1Xz=

—) za=xox%e
—IIJ— Z5 =XoX1Xz2
B) re=xox®

Il " Zr=XoX1X=

A 3-to-8 decoder
Logic diagram

Inputs Outputs
X2 X1 Xo Zo Za Z= Zz ZFa Zs Ze Z—
O O O 1 OO O O O O O O
o O 1 o 1 O O O O O o
O i O O O i O O OO O O
O i p & (0] O O 1 O O O O
i O O O O O O p & O O O
i O i O O O O O 1 O O
1 i O O o O O O O 1 O
x i 1 O o O O O O O 1

Truth table.

In this realization shown above the three inputs are assigne@rd % and the eight outputs arg Z
to Z7.

Dept. Of CSE, SJBIT Page31

Logic Design 10CS33

Function specifc decoders also exist which have less thanutputs . examples are 8421 code
decoder also called BCD ttecimal decoder. Decoders that drive seven segment displays also exist.

Realization of boolean expression using Decoder and OR gate

We see from the above truth table that the output expressions corrwespond to a single minterm. Hence
a nito 2" decoderis a minterm generator. Thus by using OR gates in conjunction with igaX
decoder boolean function realization is possible.

Ex: to realize the Boolean functions given bel
A F Fn(1,2,4,5)
A2=Fm(1,5,7)
3-to-8
pec O
1 f1
2
Xo
X1 1 3
X 4
5]
7 b—ar7

Realisation of boolean expressions

Priority encoder
8-3 line priority encoder

In priority encoder a priority. scheme is assigned to the input lines so that whenever more than one
input line is asserted at/any time, the output is determined by thdimphaving the highest priority.

The Valid bit is used. to indicate that atleast one inut line is asserted. This is done to distinguish the
situation that no input-line.is asserted from when tlenKut line is asserted , since in both cases
212223 =000

Inputs Outputs
Xo X1 X2 X3 X4 X5 Xo Xy Zy 7; 7o Valid
0O 000 0 00 OO 0 0 0 O
10 0 0 00 OO 0 0 0 1
X 10 0 00 0O 0 0 1 1
' X x 1 0 00 OO 01 0 1
4-1 line X X X 1 00 00O o1 1 1
X x x x 1.0 00O 1 0 0 1
Dept. (X X X X X100 f o 1 1 Page32
X X X Xx Xx 10 11 0 1
X X X X X Xx X1 1 1 1 1

oV

Logic Design 10CS33

Multiplexers also called data selectors are another MSI devices with a wide range of applications in
microprocessor and their peripherals design. The followind diagrams show the symbol and truth table
for the 4to 11 mux.

— 0 4-to-1 E S1 So Io In I2 I3 f
MUX

—_—)I1 (0] X X X X X X o
1 O O 0O X X X (0]

— Iz f— 1 o o 1 X X X 1
—_ 13 1 o 1 X O x Xx o
1 (0] 1 x 1 X X 1

—E S1 So 1 1 O X X O X (0]
1 1 O X X 1 x 1

I | 1 1 1 X X X O o

1 1 1 X X xX 1 1

A 4-to-1 line multiplexer symbol. Compressed Truth table

Programmable Logic Devices

Most of the circuits presented so far are available on a TTL IC chip. Circuits can be constructed using
these chips and wiring them together.An alternative to this_method would be to program all the
components into a rgjle chip, saving wiring, space and power.One type of such device is PLA
(Programmabld_ogic Array) that contains one or more and/or arrays.

Programmable Logic Devices (PLDs)

PLDOG6s ar elogt daviced that dan/grogrammedto implement any combitianal logic
circuit. Programmable refers to a hardware process used to specify the logic that a PLD implements.

There are various types of PLD devices based on which array is prograniinetevice names and
the type of array are listed in the tablédve

Types of PLDs

DEVICE AND array OR array

PROM Fixed Programmable
PLA Programmable | Programmable
PAL Programmable Fixed

As an example we will first consider

Programming the ROM

The realization of Boolean expressions using a decoder and or gates was discussed in the earlier
chapter on decoders. A similar approach is used in a PROM &iRE¥OM is a device that includes

Dept. Of CSE, SJBIT Page33

Logic Design 10CS33

both the decoder and the OR gates within the same network.The programming of the PROM is
carried out by blowing the appropriate fuses. Proms are used for Code conversions, generating bit
patterns for characters, and askigp tables for arithmetic functions.

s N = O

5—to—32
decoder

28
ly 29
30
31

X Fuse intact ; ; ; ; ; ; ; ;
+ Fuse blown
Az A Ay Ay A A A

A

5

Example: Letl,l,1, = 00010 (address 2). Then, output 2 ofdieeoder will be 1, the remaining
outputs will be 0, and ROM outpbecomes AAGA5A4A3A2ATA0 = 11000101.

Programmable Logic Arrays (PLAS)

Similar concept as in PROM, except that a PLA does not necessarily generate all possible minterms
(ie. the decoder is not usdiliore precisely, in PLAs both the AND and OR arrays can be
programmed (in PROM, the AND array is fixedhe decoder and only the ® array can be

programmed).

PLA Example

f(a,b,c) = adbbdé # abc
g(a,b,c) = adbdécd + ab + bec
h(a,b,c) =c

PLAs can be more compact implementations than ROMs, since they can benefit from minimizing the
number of products required.to implement a function.

[
o
0

Dept. Of CSE b Page34

Logic Design 10CS33

Programmable Array Logic (PAL)
OR plane (array) is fixed, AND plane can be programmdeAL is less Less flexible than PLA
Number of product terms available per function (OR outputs) is limited

PAL-based circuit implementation

A 8 C D
> > 1 > ->
- - ->
- - =
_— w
- - -
- - -
X
- ———e—— - - - =
- - -
— - - -
—— + - -
2 Y
- > - -

W=AB6CHd + CD

X = AOBCH + AOCD + ACDO6 + BCD
Y = A6C6D6 + ACD + AOGBD

HDL Implementation of Data Processing Circuits

X

v

i1
|
[

JV

£

Fig:4-8 Implementation of Full Adder with Two Half Adders and an OR Gate

//Gate-level hierarchical description of 4bit adder
module halfadder (S,C,x,y);

input x,y;

output S,C;

Dept. Of CSE, SJBIT Page35

Logic Design

/llInstantiate primitive gates
xor (S,x,y);
and (C,x,y);

endmodule

module fulladder (S,C,x,y,2);
input X.,y,z;
output S,C;
wire S1,D1,D2; //Outputs of first XOR and two AND gates
/lInstantiate the half adders
halfadder HA1(S1,D1,x,y), HA2(S,D2,51,z);
or g1(C,D2,D1);
endmodule

Dy

D,

be

()
0

AT_|>07
B —»—[>c>—‘
>

JoJoe

D

E

(a) Logic diagram

Fig. 4-19 2-to-4-Line Decoder with Enable Input

module decoder_gl (A,B,E,D);
input A,B,E;
output[0:3]D;
wire Anot,Bnot,Enot;
not
nl (Anot,A),
n2 (Bnot,B),
n3 (Enot,E);
nand
n4 (D[0],Anot;Bnot,Enot),
n5 (D[1],Anot,B,Enot),
n6 (D[2],A,Bnot,Enot),
n7 (D[3],A,B;Enot);
endmodule

//Dataflow description of 20-1-line mux
module mux2x1_df (A,B,select,OUT);

input A,B,select;

Dept. Of CSE, SJBIT

B | Dy D

(b) Truth table

D

10CS33

2 D3

[

Page36

Logic Design 10CS33

output OUT,;
assignOUT = select ? A : B;
endmodule
//IBehavioral description of-B-1-line multiplexer
module mux2x1_bh(A,B,select,OUT);
input A,B,select;
output OUT,;
reg OUT,
always @(select or A or B)
if (select == 1) OUT = A;
else OUT = B;
endmodule
/[Behavioral description of-tb-1 line mux
module mux4x1_bh (i0,i1,i2,i3,select,y);
input i0,i1,i2,i3;
input [1:0] select;
output y;
regy;
always @O or il ori2 or i3 or select)

case(select)

2'b00: y =i0;
2'b01:y =il
2blQy =iz
2bll:y =i3;
endcase
endmodule

Dept. Of CSE, SJBIT Page37

Logic Design 10CS33

Adders

Adders are the basic building blocks of all arithmetic circuits; adders add two binary numbers and
give out sum and carry as output. Basically we have two types of adders.

Half Adder.
Full Adder
Half Adder

Adding two singlebit binary values X, Y produces a sum S bit and a carry eatitChit. This
operation is called half addition and the circuit to realize it is called a half adder.

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

S (X,Y) =2(1,2)

S = XY + XY
S =Xy
CARRY(X,Y) = 2(3)

CARRY = XY

Dept. Of CSE, SJBIT Page38

Logic Design 10CS33

Full Adder

Full adder takes a thrdsts input. Adding two singlbit binary values X, Y'with a carry input bit-C
in produces a sum bit S and a carry otdut bit.

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

SUM (X,Y,Z) =2(1,2,4,7)

CARRY (X,Y,Z) =2%(3,5,6,7)

Kmap-SUM

SUM =X'Y'Z + XY'Z' + X'YZ'
SuM=xbydz

Dept. Of CSE, SJBIT Page39

Logic Design 10CS33

Kmap-CARRY

CARRY = XY + XZ+YZ

Circuit -SUM

Circuit-CARRY

Multipliers

Multiplication is achieved by adding a list of shifted multiplicands according to the digits of the
multiplier. An nbit X n-bit multiplier can be realized in combinational circuitry by using an array of
n-1 nbit adders where eaddder is shifted by one position. For each adder one input is the shifted
multiplicand multiplied by 0 or 1 (using AND gates) depending on the multiplier bit, the other input is
n partial product bits.

Dept. Of CSE, SJBIT Page40

Logic Design 10CS33

10011 x 1001
00000+
00000+
10011 +——

10101011

Dividers

The binary divisions are performed in‘@ry similar manner to the decimal divisions, as shown in the
below figure examples. Thus, the second number is repeatedly subtracted from the figures of the first
number after being multiplied either with '1' or with '0'. The multiplication bit (‘1" ois'@elected for

each subtraction step in such aimanner that the subtraction result is not negative. The division result is
composed from all the successive multiplication bits while the remainder is the result of the last
subtraction step.

1101011:101=10101

1011 - * }
11—

101 %0
110-—
101 x1

11-
101 xd
111 -
101 x1
10

This algorihm can be implemented by a series of subtracters composed of modified elementary cells.
Each subtracter calculates the difference between two input numbers, but if the result is negative the
operation is canceled and replaced with a subtraction by zeus, &ach divider cell has the normal
inputs of a subtracter unit as in the figure below but a supplementary input ('div_bit") is also present.
This input is connected to the b_req_out signal generated by the most significant cell of the subtracter.
If this signal is '1', the initial subtraction result is negative and it has to be replaced with a subtraction
by zero. Inside each divider cell the div_bit signal controls an equivalent 2:1 multiplexer that selects

Dept. Of CSE, SJBIT Pagedl

Logic Design 10CS33

between bit 'x' and the bit included in the tsabtion result XY. The complete division can therefore

by implemented by a matrix of divider cells connected on rows and columns as shown in figure
below. Each row performs one multiplicattandsubtraction cycle where the multiplication bit is
suppliedby the NOT logic gate at the end of each row. Therefor the NOT logic gates generate the bits
of the division result.

div_ksit D l\uh res
-

Xt —‘ﬁ_

Y- : -\I j_)_

L=
b_req_in

o ,:_} 3)
1)

—_~

Carry Lookahead Adder (CLA)

Cin A B Ceolt
‘ ; o 0 0 "kill*
AD- —*S 0 1 /C-in. "propagate”
B1- g & 1 %0 C-in" “propagate”
’ 1 ¥ 1 "generate”
‘—‘ C1=G0+C0eP0
& = —» S
= G >
B = 4
¢—'C2‘—'G1 +[50 e P14 ClePleP1
A - S
B4 € >
{ CI=G2+B1eP2+G0eP] eP2 +COeF0 eP1 o2
A —» S
B G » A
=} > N TP

v
di=. .

Since each carry generate function Gi and carry propogate function Pi is itself only a fuhttt®n o
operand variables, the output carry and the input carry at each stage can be expressed as a function of
the operand variablesand the initial carry Co. parallel adders whose realizations are based on the
above equations are called carry look aheaersdd

Dept. Of CSE, SJBIT Page42

Logic Design 10CS33

Unit-4 : Clocks , Flip Flops

Contents:

Clock Waveforms

TTL Clock

Schmitt Trigger

Clocked D FLIRFLOP
Edgetriggered D FLIPFLOP
Edgetriggered JK FLIPFLOP
FLIP-FLOP Timing

JK Masterslave FLIRFLOP

Switch Contact Bounce Circuits
Various Repregeation of FLIRFLOPs
Analysis of Sequential Circuits
HDL Implementation of FLIFFLOP

Dept. Of CSE, SJBIT Page43

Logic Design 10CS33

Introduction :
Logic circuit is divided into two types.

1. Combinational Logic Circuit
2. Sequential Logic Circuit

Definition :

1. Combinational Logic Circuit :

The circuit in which outputs depends on only present value of inputs. So it is possible to
describe each output as function of inputs by using Boolean expression. No memory element
involved. No clock input. Circuit is implemented by using logic gates.pFbpagation delay
depends on, delay of logic gates. Examples of combinational logic circuits are : full adder,
subtractor, decoder, codeconverter, multiplexers etc.

—» —>
—’ —>
inputs : Combinational :
: Logic Circuit : outputs
—’ —>

2. Sequential Circuits :

Sequential Circuit is the logic circuit in which output degieion present value of inputs at

that instant and past history of circuit i.e. previous output. The past output is stored by using
memory device. The internal data stored in circuit is called as state. The clock is required for
synchronization. The delayegends on propagation delay of circuit and clock frequency. The
examples are flifflops, registers, counters etc.

—>

L)
Combinational outputs

Logic Circuit >

—_—>
inputs ——»
— >

Memory Device [

A Basic Bistable element.
0 Flip-Flop is Bistable element.
0 It consist of two cross coupled NOT Gates.

o It has two stable states.

Dept. Of CSE, SJBIT Paged44

10CS33

Logic Design
o Q and Q are two outputs complement of each other.
0 The data stored 1 or O in basic bistable element is state -6ibftip
o 117 State is set condition for fliflop.
o Ofi State is reset/ clear for fhjbop.
0 It stores 1 or O state as long power is ON.
Latches :

SR Latch : Seteset FlipFlop

Latch is a storage device by using Hhlop.
Latch can be controlled by direct inputs.
Latch outputs can be controlled by clock or enable input.

> >

>~

Q and’ Q are present state for output.

> >

Q" and” Q" are next states for output.
The function table / Truth table gives relation between inputs and outputs.
The S=R=1 condition is not allowed in SR FF as output is unpredictable.

> >

Application of SR Latch :

A A switch debouncer

o

&
Time

I v .
e]

(@)

TR—*—F_{ R 0 L>~ Time

Time

1

Time

)

Dept. Of CSE, SJBIT Paged5

Logic Design
A Bouncing problem with Push button switch.

A Debouncing action.
A SR FlipFlop as switch debouncer.

Gated SR Latch :

Enable () - ‘ —-:_-:T-'-""’:--_-#
)
D
S o
R — J/ T

(c}

Enable input C is clock input.

C=0, No change of state.
S=1, R=0 is set condition for Flijop.
S=0, R=1 is reset conditiooif Flip-flop.

> > > >y > >

S=R=1 is ambiguous:state, not allowed.

JK Flip -Flop by using SR FlipFlop

J.—l} 5 Q —

C*

o
] e

o X

C=1, Output changes as per input condition.

o4

e[

10CS33
Inputs Outputs
S R C et o
0 0 1 0N 0
V] l l 0] !
1 O 1 1 0
I I i 1* 1%
X X 9 0 0
*Unpredictable behavior will result
if §and Reeturn to 0 simultaneously
or Creturns 10 0 while S and R are |
(b)
o
0 P~
Function Table
Input Output
C J | K | Qf | Of |Remark
JL oo]| Q | Q|NC
L 0 1 0 1 |Reset
L |1 |01 | 0 [Set
JL |1 [1| Q | Q |Toggle
0 - x 0 0O | NOC

Logic Design 10CS33

In SR FF, S=R=1 condition is not allowed.

A JK FF is modified version of SR FF.

A Due to feedback from output to input AND Gate J=K=1 is toggle condition féRIK
A The output is complement of the previous output.

A This condition is used in counters.

A T-FF is modified version of JK FF in which T=J=K=1.

Funciion Table
. T Q Input Output
+ s
1——cC C T Q 9 Remark
- L 0 Q Q NC
K _Q |1 | © |0 |Togle
0 X Q Q |NC
Gated D Latch :

Enable (C) ;npu:i ZTP!};
0 1 0 1
[1 0
X 0 0 0

1
L~
O

{e)

D Flip-Flop.is Data FligFlop.
D Flip-Flop stores'1 or 0.
R input is complemerdf S.

Only one D input is present.

> > > > >

D Flip-Flop is a storage device used in register.

Dept. Of CSE, SJBIT Page47

Logic Design

Master slave SR FlipFlop

Master-slave SR flip-flop
s o 0 Oum o 0 Qs
Clock (C) gt 28
Ou Qs
R R op R O LrE=—ar— O
Master Slave

Master disabled

b

(a)

Master enabled

| Master disabled

Slave enabled

Slave disabled

(b)
Inputs Outputs

s R C ot ot

0 B =l 0 0

0 T = 0 1

1 0 L 1 0

1 1 i Undefined Undefined
S 0 0 0

> > > > >

Dept. Of CSE, SJBIT

()

Slave follows:master output.
The output is delayed.

[
Y SR
!

Tisne

Two SR FlipFlop; T'is:Master and s slave.
Master FlipFlop is positive edge triggered.
Slave FlipFlop is'neative edge triggered.

10CS33

Paged8

Logic Design 10CS33

Master slave JK Flip-Flop

A In SR FlipFlop the input combination S=R=1 is not allowed.
A JK FF is modified version of SR EF.
A Due to feedback from'slave FF outpo master, J=K=1 is allowed.

J=K=1, toggle, action i

Inputs Outputs
D el Q+ 64—

‘ o T 0 1

O 1 0

X 0 o 0

X 1 o 0

Clock (C) ®)
6 o
—D or— D o—
D =

e —pC —e

o ep—
D

(a) (©

S=R=1, No Changef Statt =~ S=0,R=1, Q=1 andQ=0

Logic Design

HDL implementation of Fliglops

D

cD Next state of Q
0 No cha
10 Q= U0:Re
o 11 O = I: Set state

o

(a) Logic diagram (b) Function table

module D_latch(Q,D,control);

output Q;

input D,control;

reg Q;

always @(control or D)

if(control) Q = D; //Same as: if(control=1)
endmodule

/ID flip-flop
module D_FF (Q,D,CLK);
output Q;
inputD,CLK;
reg Q;
always @(posedge CLK)
Q=D;

endmodule

/1IK flip -flop from D flip -flop and gates
module JKFF (Q,J,K,CLK,RST);

output Q;

input J,K,CLK,RST;

wire JK;

assign JK=J & ~Q) | (~K & Q);
/lInstantiate D flipflop

DFFJK1 (Q,JK,CLK,RST);
endmodule

/I Functional description of JK.// flip-flop
module JK_FF (J,K,CLK,Q,Qnot);
output Q,Qnot;
input J,K,CLK;
reg Q;
assignQnot =~ Q;
always @(posedge CLK)
cas€{J,K})
2'b00: Q =Q;
2'b01: Q= 1'b0;
2'b10: Q = 1'b1;
2b11:Q=~Q;
endcase
endmodule

Dept. Of CSE, SJBIT

sel state

10CS33

Page50

Logic Design 10CS33

Unit-5 : Registers

Contents:

Types of Registers

Serial In- Serial Out

Serial In- Parallel out

Parallel In- Serial Out

Parallé In - Parallel Out
Universal Shift Register
Applications of Shift Registers

Register Implementation in HDL

Dept. Of CSE, SJBIT Pagebl

Logic Design 10CS33

An n-bit register is a collection of n D fliflops with a common clock used to store n related
bits.

Types of Register:

Serial

Clock S —>c
| QID oD

Fig. : Serial-In, Serial-Out Unidirectional Shift Register

Register is ampup of FlipFlops.
It stores binary information O or 1.

It is capable of moving data left or right with clock pulse:

> > > >

Registers are classified as
9 Seriatin SeriatOut
9 Seriatin parallel Out
9 Parallelin SeriatOut
1

Parallelin parallel Out

Parallel-in Unidirectional Shift Register

Dept. Of CSE, SJBIT Pageb2

