
Logic Design 10CS33

Dept. Of CSE, SJBIT Page 1

LOGIC DESIGN
(Common to CSE & ISE)

Subject Code: 10CS33 I.A. Marks : 25

Hours/Week : 04 Exam Hours: 03

Total Hours : 52 Exam Marks:

100

PART-A

UNIT ï 1 7 Hours

Digital Principles, Digital Logic: Definitions for Digital Signals, Digital Waveforms,

Digital Logic, 7400 TTL Series, TTL Parameters The Basic Gates: NOT, OR, AND,

Universal Logic Gates: NOR, NAND, Positive and Negative Logic, Introduction to HDL.

UNIT ï 2 6 Hours

Combinational Logic Circuits

Sum-of-Products Method, Truth Table to Karnaugh Map, Pairs Quads, and Octets, Karnaugh

Simplifications, Donôt-care Conditions, Product-of-sums Method, Product-of-sums

implifications, Simplification by Quine-McClusky Method, Hazards and Hazard Covers,

HDL Implementation Models.

UNIT ï 3 6 Hours

Data-Processing Circuits: Multiplexers, Demultiplexers, 1-of-16 Decoder, Encoders,

Exclusive-or Gates, Parity Generators and Checkers, MagnitudeComparator, Programmable

Array Logic, Programmable Logic Arrays, HDL

Implementation of Data Processing Circuits

UNIT ï 4 7 Hours

Clocks, Flip-Flops: Clock Waveforms, TTL Clock, Schmitt Trigger, Clocked D FLIP-

FLOP, Edge-triggered D FLIP-FLOP, Edge-triggered JK FLIP-FLOP, FLIP-FLOP Timing,

JK Master-slave FLIP-FLOP, Switch Contact Bounce Circuits, Various Representation of

FLIP-FLOPs, Analysis of Sequential Circuits, HDL Implementation of FLIP-FLOP

PART-B

UNIT ï 5 6 Hours

Registers: Types of Registers, Serial In - Serial Out, Serial In - Parallel out, Parallel In -

Serial Out, Parallel In - Parallel Out, Universal Shift Register, Applications of Shift

Registers, Register Implementation in HDL

UNIT ï 6 7 Hours

Counters: Asynchronous Counters, Decoding Gates, Synchronous Counters, Changing the

Counter Modulus, decade Counters, Presettable Counters, Counter Design as a Synthesis

problem, A Digital Clock, Counter Design using HDL

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 2

UNIT ï 7 7 Hours

Design of Synchronous and Asynchronous Sequential Circuits: Design of Synchronous

Sequential Circuit: Model Selection, State Transition Diagram, State Synthesis Table, Design

Equations and Circuit Diagram, Implementation using Read Only Memory, Algorithmic State

Machine, State Reduction Technique. Asynchronous Sequential Circuit: Analysis of

Asynchronous Sequential Circuit, Problems with Asynchronous Sequential Circuits, Design

of Asynchronous Sequential Circuit, FSM Implementation in HDL

UNIT ï 8 6 Hours

D/A Conversion and A/D Conversion: Variable, Resistor Networks, Binary Ladders, D/A

Converters, D/A Accuracy and Resolution, A/D Converter- Simultaneous Conversion, A/D

Converter-Counter Method, Continuous A/D Conversion, A/D Techniques, Dual-slope A/D

Conversion, A/D Accuracy and Resolution

Text Books:

1. Donald P Leach, Albert Paul Malvino & Goutam Saha: Digital Principles and

Applications, 7th Edition, Tata McGraw Hill, 2010.

Reference Books:

1. Stephen Brown, Zvonko Vranesic: Fundamentals of Digital Logic Design with VHDL, 2nd

Edition, Tata McGraw Hill, 2005.

2. R D Sudhaker Samuel: Illustrative Approach to Logic Design, Sanguine-Pearson, 2010.

3. Charles H. Roth: Fundamentals of Logic Design, Jr., 5th Edition, Cengage Learning, 2004.

4. Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss: Digital Systems Principles and

Applications, 10th Edition, Pearson Education, 2007.

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 3

INDEX SHEET

Unit No. Unit Name Page No.
I Digital Principles, Digital Logic 4-15

II Combinational Logic Circuits 16-29

III Data -Processing Circuits 30-42

IV Clocks, Flip -Flops 43-50

V Registers 51-54

VI Coun ters 55-60

VII Design of Synchronous and

Asynchronous Sequential Circuits
61-76

VIII D/A Conversion and A/D

Conversion
77-84

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 4

Unit -1 : Digital Principles, Digital Logic

Contents :

Definitions for Digital Signals

Digital Waveforms

Digital Logic 7400 TTL Series, TTL Parameters The Basic

Gates: NOT, OR, AND,

Universal Logic Gates: NOR, NAND

Positive and Negative Logic

Introduction to HDL.

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 5

Definitions of Analog vs Digital signals

An Analog signal is any continuous signal for which the time varying feature (variable) of

the signal is a representation of some other time varying quantity, i.e., analogous to another

time varying signal. It differs from a digital signal in terms of small fluctuations in the signal

which are meaningful.

A digital signal uses discrete (discontinuous) values. By contrast, non-digital (or analog)

systems use a continuous range of values to represent information. Although digital

representations are discrete, the information represented can be either discrete, such as

numbers or letters, or continuous, such as sounds, images, and other measurements of

continuous systems.

Comparison chart

Analog Digital

Technology:
Analog technology records waveforms

as they are.

Converts analog waveforms into set

of numbers and records them. The

numbers are converted into voltage

stream for representation.

Representation:
Uses continuous range of values to

represent information.

Uses discrete or discontinuous values

to represent information.

Uses:

Can be used in various computing

platforms and under operating systems

like Linux, Unix, Mac OS and

Windows.

Computing and electronics

Signal:

Analog signal is a continuous signal

which transmits information as a

response to changes in physical

phenomenon.

Digital signals are discrete time

signals generated by digital

modulation.

Clocks:
Analog clocks indicate time using

angles.

Digital clocks use numeric

representation to indicate time.

Computer: Analog computer uses changeable

continuous physical phenomena such

Digital computers represent changing

quantities incrementally as and when

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 6

Analog Digital

as electrical, mechanical, hydraulic

quantities so as to solve a problem.

their values change.

Waveforms in digital systems

In computer architecture and other digital systems, a waveform that switches between two

voltage levels representing the two states of a Boolean value (0 and 1) is referred to as a

digital signal, even though it is an analog voltage waveform, since it is interpreted in terms of

only two levels.

The clock signal is a special digital signal that is used to synchronize digital circuits. The

image shown can be considered the waveform of a clock signal. Logic changes are triggered

either by the rising edge or the falling edge.

The given diagram is an example of the practical pulse and therefore we have introduced two

new terms that are:

¶ Rising edge: the transition from a low voltage (level 1 in the diagram) to a high

voltage (level 2).

¶ Falling edge: the transition from a high voltage to a low one.

¶

TTL Series

Normally Binary Logic Values are are defined as either Logic ó1ôor Logic ó0ô depending on

the level of the output voltage. Another additional (intermediate value) is the óUndefined

valueô. Logic levels can either be Positive logic or Negative Logic. For eg:

In TTL Logic Levels (positive logic) logic high or Logic 1 is between 2.4V¢ VH ¢ 5V.

Logic ó0ô or low logic is between 0V¢ VL ¢ 0.4 V and the Undefined value is between 0.4

V <undefined< 2.4 V

Logic families are classified based on either the devices used ,example: diodes ,transistors

etc. or the structure of Digital Circuits , example: ECL ,Wired logic etc.

The following are the examples of logic families based on the devices used and their

structure,

Å DTL :Diode Transistor Logic

Å RTL :Resistor Transistor Logic

Å TTL :Transistor Transistor Logic

www.vt
uc

s.c
om

http://en.wikipedia.org/wiki/Computer_architecture
http://en.wikipedia.org/wiki/Digital
http://en.wikipedia.org/wiki/Waveform
http://en.wikipedia.org/wiki/Boolean_logic
http://en.wikipedia.org/wiki/Clock_signal
http://en.wikipedia.org/wiki/Synchronization

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 7

Å ECL :Emitter Coupled Logic

Å CMOS :Complementary MOSFET Logic

The various logic families differ in the current driving capabilities,Logic Levels, propagation

delays and a few other other parameters. The Comparison of TTL and CMOS is clearly

illustrated in the following table as an example of differences in the logic families:

TTL CMOS

Å Faster

Å Stronger drive

capability

Å Low power consumption

Å Simpler to make

Å Greater packing density

Å Better noise immunity

Integration Levels:

The devices greatly differ in the density of fabrication ie the levels of integration

used.Depending on the number of transistors/diodes/gates used in the chip they are broadly

classified as :

Å SSI -small scale integration

Å MSI -medium scale integration

Å LSI -large scale integration

Å VLSI -very large scale integration

Å ULSI -ultra large scale integration

Å GSI -giant scale integration

Levels of integration Transistors/package Gates/chip Applications

SSI 1-100 <12 Logic gates Op-amps

MSI 100-1000 12-99 Registers Filters

LSI 1000-10000 1000 8 bit processor, A/D converter

VLSI 10k gates/chip 16,32 bit processor

256KB memory

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 8

Speed of Operation:

As signals propagate through the various gates there is a finite time required for the signal

change to occur, eg the time required for the input high of a n inverter to change to logic

low at the output. This implies that there is a limitation on the no of times the output can

change or the speed of operation of the gate. The parameters of importance for the speed

of operation are :

Å tLH- low to high rise time (tr) : it is defined as the time interval for the signal to rise

between 10% to 90% of Vdd

Å tHL- high to low time or fall time (tf): it is defined as the time for signal to fall from

90%Vdd to 10%Vdd

Å

The switching is fast with

 tmin=thl+tlh

Therefore maximum switching freq is achieved when fmax=1/tmin

The switching speed is limited due to the effect of capacitance at the base emmiter

/collector and ground etc.

 For eg: if thl =0.5 nsec, tlh=1.0 nsec

 Then tmin =1.5 nsec And fmax=1/ tmin=666.67Mhz

Propagation delay:

It is the physical delay as the logical signal propagates through the gates. It differs depending

on whether the output transition goes from cutoff to saturation or from saturation to cut-off.

DS processor

ULSI 100k gates/chip 64 bit processor

8 MB memory

Image processor

GSI 1M gates/chip 64 MB memory

multiprocessor

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 9

As the loads are connected to gates to realize the necessary logic operations the output signal

levels are affected. This is because there is a current flow between the gates due to which

there is power consumption. Thus the number of circuits(similar gates) that can be connected

to the gates gets limited.

Å Fan-out of a gate is the number of gates driven by that gate i.e the maximum number

of gates (load) that can exist without impairing the normal operation of the gate.

Å Fan-in of a gate is the number of inputs that can be connected to it without impairing

the normal operation of the gate.

Overview of Basic Gates and Universal Logic Gates

A logic gate is an electronic circuit/device which makes the logical decisions. To arrive at

this decisions, the most common logic gates used are OR, AND, NOT, NAND, and NOR

gates. The NAND and NOR gates are called universal gates. The exclusive-OR gate is

another logic gate which can be constructed using AND, OR and NOT gate.

Logic gates have one or more inputs and only one output. The output is active only for certain

input combinations. Logic gates are the building blocks of any digital circuit. Logic gates are

also called switches. With the advent of integrated circuits, switches have been replaced by

TTL (Transistor Transistor Logic) circuits and CMOS circuits. Here I give example circuits

on how to construct simples gates.

AND Gate

The AND gate performs logical multiplication, commonly known as AND function. The

AND gate has two or more inputs and single output. The output of AND gate is HIGH only

when all its inputs are HIGH (i.e. even if one input is LOW, Output will be LOW).

If X and Y are two inputs, then output F can be represented mathematically as F = X.Y, Here

dot (.) denotes the AND operation. Truth table and symbol of the AND gate is shown in the

figure below.

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 10

X Y F=(X.Y)

0 0 0

0 1 0

1 0 0

1 1 1

OR Gate

The OR gate performs logical addition, commonly known as OR function. The OR gate has

two or more inputs and single output. The output of OR gate is HIGH only when any one of

its inputs are HIGH (i.e. even if one input is HIGH, Output will be HIGH).

If X and Y are two inputs, then output F can be represented mathematically as F = X+Y. Here

plus sign (+) denotes the OR operation. Truth table and symbol of the OR gate is shown in

the figure below.

 Y F=(X+Y)

0 0 0

0 1 1

1 0 1

1 1 1

NOT Gate

The NOT gate performs the basic logical function called inversion or complementation. NOT

gate is also called inverter. The purpose of this gate is to convert one logic level into the

opposite logic level. It has one input and one output. When a HIGH level is applied to an

inverter, a LOW level appears on its output and vice versa.

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 11

If X is the input, then output F can be represented mathematically as F = X', Here apostrophe

(') denotes the NOT (inversion) operation. There are a couple of other ways to represent

inversion, F= !X, here ! represents inversion. Truth table and NOT gate symbol is shown in

the figure below.

X Y=X'

0 1

1 0

NAND Gate

NAND gate is a cascade of AND gate and NOT gate, as shown in the figure below. It has two

or more inputs and only one output. The output of NAND gate is HIGH when any one of its

input is LOW (i.e. even if one input is LOW, Output will be HIGH).

X Y F=(X.Y)'

0 0 1

0 1 1

1 0 1

1 1 0

NOR Gate

NOR gate is a cascade of OR gate and NOT gate, as shown in the figure below. It has two or

more inputs and only one output. The output of NOR gate is HIGH when any all its inputs are

LOW (i.e. even if one input is HIGH, output will be LOW). www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 12

X Y F=(X+Y)'

0 0 1

0 1 0

1 0 0

1 1 0

XOR Gate

An Exclusive-OR (XOR) gate is gate with two or three or more inputs and one output. The

output of a two-input XOR gate assumes a HIGH state if one and only one input assumes a

HIGH state. This is equivalent to saying that the output is HIGH if either input X or input Y

is HIGH exclusively, and LOW when both are 1 or 0 simultaneously.

If X and Y are two inputs, then output F can be represented mathematically as F = X Y,

Here denotes the XOR operation. XY and is equivalent to X.Y' + X'.Y. Truth table and

symbol of the XOR gate is shown in the figure below.

X Y F=(X Y)

0 0 0

0 1 1

1 0 1

1 1 0

XNOR Gate

An Exclusive-NOR (XNOR) gate is gate with two or three or more inputs and one

output. The output of a two-input XNOR gate assumes a HIGH state if all the inputs

assumes same state. This is equivalent to saying that the output is HIGH if both input X and

input Y is HIGH exclusively or same as input X and input Y is LOW exclusively, and LOW

when both are not same.

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 13

If X and Y are two inputs, then output F can be represented mathematically as F = XY,

Here denotes the XNOR operation. XY and is equivalent to X.Y + X'.Y'. Truth table and

symbol of the XNOR gate is shown in the figure below.

X Y F=(X Y)'

0 0 1

0 1 0

1 0 0

1 1 1

Boolean Laws and Theorems

A. Axioms

Consider a set S = { 0. 1} Consider two binary operations, + and . , and one unary operation, -- ,

that act on these elements. [S, ., +, --, 0, 1] is called a switching algebra that satisfies the

following axioms S.

B. Closure

 If X S and Y S then X.Y S

 If X S and Y S then X+Y S

C. Identity

 an identity 0 for + such that X + 0 = X

 an identity 1 for . such that X . 1 = X

D. Commutative Laws

X + Y = Y + X

X Y = Y X

E. Distributive Laws

 X.(Y + Z) = X.Y + X.Z

 X + Y.Z = (X + Y) . (X + Z)

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 14

Idempotent Law

X + X = X

X X = X

DeMorgan's Law

(X + Y)' = X' . Y', These can be proved by the use of truth tables.

Proof of (X + Y)' = X' . Y'

 Y X+Y (X+Y)'

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

X Y X' Y' X'.Y'

0 0 1 1 1

0 1 1 0 0

1 0 0 1 0

1 1 0 0 0

The two truth tables are identical, and so the two expressions are identical.

(X.Y) = X' + Y', These can be proved by the use of truth tables.

Proof of (X.Y) = X' + Y'

X Y X.Y (X.Y)'

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 0

X Y X' Y' X'+Y'

0 0 1 1 1

0 1 1 0 1

1 0 0 1 1

1 1 0 0 0

Introduction to HDL: Hardware Description Language

HDL is a language that describes the hardware of digital systems in a textual form. It

resembles a programming language, but is specifically oriented to describing hardware

structures and behaviors.

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 15

The main difference with the traditional programming languages is HDLôs representation of

extensive parallel operations whereas traditional ones represents mostly serial operations.

HDL can be used to represent logic diagrams, Boolean expressions, and other more complex

digital circuits

There are two standard HDLôs that are supported by IEEE.

Â VHDL (Very-High-Speed Integrated Circuits Hardware Description

Language) - Sometimes referred to as VHSIC HDL, this was developed from

an initiative by US. Dept. of Defense.

Â Verilog HDL ï developed by Cadence Data systems and later transferred to a

consortium called Open Verilog International (OVI).

Verilog: Verilog HDL has a syntax that describes precisely the legal constructs that can be

used in the language.

È It uses about 100 keywords pre-defined, lowercase, identifiers that define the

language constructs.

È Example of keywords: module, endmodule, input, output wire, and, or, not , etc.,

È Any text between two slashes (//) and the end of line is interpreted as a comment.

È Blank spaces are ignored and names are case sensitive.

A module is the building block in Verilog. It is declared by the keyword module and is

always terminated by the keyword endmodule.Each statement is terminated with a

semicolon, but there is no semi-colon after endmodule.

HDL Example

module smpl_circuit(A,B,C,x,y);

 input A,B,C;

 output x,y;

 wire e;

 and g1(e,A,B);

 not g2(y,C);

 or g3(x,e,y);

endmodule

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 16

Unit -2 : Combinational Logic Circuits

Contents:

Sum-of-Products Method

Truth Table to Karnaugh Map

Pairs Quads, and Octets

Karnaugh Simplifications, Donôt-care Conditions

Product-of-sums

Method, Product-of-sums simplifications

 Simplification by Quine-McClusky

Method, Hazards and Hazard Covers

HDL Implementation Models.

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 17

DeMorgans Laws are applicable for any number of variables.

Boundedness Law

X + 1 = 1

X . 0 = 0

Absorption Law

X + (X . Y) = X

X . (X + Y) = X

Elimination Law

X + (X' . Y) = X + Y

X.(X' + Y) = X.Y

Unique Complement theorem

If X + Y = 1 and X.Y = 0 then X = Y'

Involution theorem

X'' = X

0' = 1

Associative Properties

X + (Y + Z) = (X + Y) + Z

X . (Y . Z) = (X . Y) . Z

PRINCIPLE OF DUALITY

One can transform the given expression by interchanging the operation (+) and (Å) as

well as the identity elements 0 and 1 . Then the expression will be referred as dual

of each other. This is known as the principle of duality.

Example x + x = 1 then the dual expression is

 x Å x = 0

A procedure which will be used to write Boolean expressions form truth table is

known as canonical formula. The canonical formulas are of two types

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 18

1. Minterm canonical formulas

2. Maxterm canonical formulas

MINTERM CANONICAL FORMULAS

Minterms are product of terms which represents the functional values of the variables

appear either in complemented or un complemented form.

Ex: f(x,y,z) = x y z + x y z + x y z

The Boolean expression whichis represented above is also known as SOP or

disjunctive formula. The truth table is

 x y z f

 0 0 0

 0 0 1

 0 1 0

 0 1 1

 1 0 0

 1 0 1

 1 1 0

 1 1 1

0

1

0

1

1

0

0

0

m- NOTATION

To simplify the writing of a minterm in canonical formula for a function is

performed using the symbol mi. Where i stands for the row number for which the

function evaluates to 1.

The m-notation for 3- variable an function Boolean function

 f(x,y,z) = x y z + x y z + x y z is written as

 f(x,y,z) = m1+ m3 + m4 or

 f(x,y,z) = äm(1,3,4)

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 19

A three variable m- notation truth variable

 x y z Decimal

designator of row

Minterm m-notation

 0 0 0

 0 0 1

 0 1 0

 0 1 1

 1 0 0

 1 0 1

 1 1 0

 1 1 1

0

1

2

3

4

5

6

7

x y z

x y z

x y z

x y z

x y z

x y z

x y z

x y z

m0

m1

m2

m3

m4

m5

m6

m7

MAXTERM CANONICAL FORM

Maxterm are sum terms where the variable appear once either in complement or un-

complement forms and these terms corresponds to a functional value representing 0.

Ex. f(x,y,z) = (x+ y+ z) (x+ y+z) (x + y + z)

 = ÔM(0, 2, 5)

 = M0, M2, M5

KARNAUGH MAPS (K - MAP)

 A method for graphically determining implicants and implicates of a

Boolean function was developed by Veitch and modified by Karnaugh . The

method involves a diagrammatic representation of a Boolean algebra. This graphic

representation is called map.

It is seen that the truth table can be used to represent complete function of n-

variables. Since each variable can have value of 0 or 1. The truth table has 2n

rows. Each rows of the truth table consist of two parts (1) an n-tuple which

corresponds to an assignment to the n-variables and (2) a functional value.

A Karnaugh map (K-map) is a geometrical configuration of 2n cells

such that each of the n-tuples corresponds to a row of a truth table

uniquely locates a cell on the map. The functional values assigned to the n-

tuples are placed as entries in the cells, i.e. 0 or 1 are placed in the

associated cell.

An significant about the construction of K-map is the arrangement of the

cells. Two cells are physically adjacent within the configuration if and only if

their respective n-tuples differ in exactly by one element. So that the Boolean

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 20

law x+x=1 cab be applied to adjacent cells. Ex. Two 3- tuples (0,1,1) and

(0,1,0) are physically a djacent since these tuples vary by one element.

 One variable : One variable needs a map of 2
1
= 2 cells map as shown below

 x f(x)

 0 f(0)

 1 f(1)

TWO VARIABLE : Two variable needs a map of 2
2
 = 4 cells

 x y f(x,y)

 0 0 f(0,0)

 0 1 f(0,1)

 1 0 f(1,0)

 1 1 f(1,1)

THREE VARIABLE : Three variable needs a map of 2
3
 = 8 cells. The arrangement of cells

are as follows

 x y z f(x,y,z)

 0 0 0 f(0,0,0)

 0 0 1 f(0,0,1)

 0 1 0 f(0,1,0)

 0 1 1 f(0,1,1)

 1 0 0 f(1,0,0)

 1 0 1 f(1,0,1)

 1 1 0 f(1,1,0)

 1 1 1 f(1,1,1)

FOUR VARIABLE : Four variable needs a map of 2
4
 = 16 cells. The arrangement of cells are

as follows

 w x y z f(w,x,y,z) w x y z f(w,x,y,z)

 0 0 0 0 f(0,0,0,0) 1 0 1 0 f(1,0,1,0)

 0 0 0 1 f(0,0,0,1) 1 0 1 1 f(1,0,1,1)

 0 0 1 0 f(0,0,1,0) 1 1 0 0 f(1,1,0,0)

 0 0 1 1 f(0,0,1,1) 1 1 0 1 f(1,1,0,1)

 0 1 0 0 f(0,1,0,0) 1 1 1 0 f(1,1,10)

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 21

 0 1 0 1 f(0,1,0,1) 1 1 1 1 f(1,1,1,1)

 0 1 1 0 f(0,1,1,0)

 0 1 1 1 f(0,1,1,1)

 1 0 0 0 f(1,0,0,0)

 1 0 0 1 f(1,0,0,1)

 Four variable K-map.

0000 0001 0011 0010

0100 0101 0111 1010

1100 1101 1111 1110

1000 1001 1011 1010

Ex. Obtain the minterm canonical formula of the three variable problem given below

 f(x, y,z) = x y z+ x y z + x y z + x y z

 f(x,y,z) = äm(0,2,4,5)

 00 01 11 11

 1

 0

 0

 1

 1

 1

 0

 0

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 22

Ex. Express the minterm canonical formula of the four variable K-map given below

 yz

 00 01 11 10

 1 1 0 1

 1 1 0 0

 0 0 0 0

 1 0 0 1

f(w,x,y,z) = w x y z + w x y z + w x y z + w x y z + w x y z + w x y z

f(w,x,y,z) = ä m(0, 1, 2, 4, 5,

Ex. Obtain the max term canonical formula

 (POS) of the three variable problem stated above

 f(x,y,z) = (x + y +z)(x + y +z)(x + y +z)

 (x + y +z)

 f(x,y,z) = PM(1,3,6,7)

Ex Obtain the max term canonical formula

 (POS) of the four variable problem stated above

f(w,x,y,z) = (w + x + y + z) (w + x + y + z) (w + x + y + z)

 (w + x + y + z) (w + x + y + z) (w + x + y + z)

 (w + x + y + z) (w + x + y + z) (w + x + y + z)

f(w,x,y,z) = PM(3,6,7,9,11,12,13,14,15)

PRODUCT AND SUM TERM REPRESENTATION OF K ïMAP

 1.The importance of K-map lies in the fact that it is possible to determine the implicants

and implicates of a function from the pattern of 0ôs and 1ôs appearing in the map. The cell

of a K-map has entry of 1ôs is refereed as 1-cell and that of 0,s is referred as 0-cell.

 2. The construction of an n-variable map is such that any set of 1-cells or 0-cells which

form a 2
a
x2

b
rectangular grouping describing a product or sum term with n-a-b variables , where a

and b are non-negative no.s

 3. The rectangular grouping of these dimensions referred as Subcubes. The subcubes must

be the power of 2 i.e. 2
a+b

 equals to 1,2,4,8 etc.

wx

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 23

4. For three variable and four variable K-map it must be remembered that the edges are also

adjacent cells or subcubes hence they will be grouped together.

5. Given an n-variable map with a pair of adjacent 1-cells or 0-cellscan result n-1

variable.Where as if a group of four adjacent subcubes are formed than it can result n-2

variables. Finally if we have eight adjacent cells are grouped may result n-3 variable

product or sum term.

Typical pair of subcubes

Typical group of four adjacent subcube

 1 1

1 1

Typical group of four adjacent subcubes.

1 1

1 1

1

 1 1

 1 1 1

 1

1 1 1 1

1 1

1 1 www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 24

Typical group of eight adjacent subcubes.

1 1 1 1

1 1 1 1

Typical map subcubes desc

USING K-MAP TO OBTAIN MINIMAL EXPRESSION FOR COMPLETE

BOOLEAN FUNCTIONS :

 How to obtain a minimal expression of SOP or POS of given function is discussed.

 PRIME IMPLICANTS and K -MAPS :

CONCEPT OF ESSENTIAL PRIME IMPLICANT

00 01 11 10

 0

 0

 0

 1

 0

 0

 1

 1

f(x,y,z)= xy+ yz

1 1 1 1

1 1 1 1

 1 1

 1 1

 1 1

 1 1

1 1

1 1

1 1

1 1

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 25

ALGORITHM TO FIND ALL PRIME IMPLICANTS

 A General procedure is listed below

1. For an n-variable map make 2n entries of 1ôs. or 0ôs.

2. Assign I = n , so that find out biggest rectangular group with dimension 2ax2b = 2 n-1.

3. If bigger rectangular group is not possible I = I-1 form the subcubes which

consist of all the previously obtained subcube repeat the step till all 1-cell or 0ôs are

covered.

4. Remaining is essential prime implicants

 1. Essential prime implicants

 2. Minimal sums

 3. Minimal products

 MINIMAL EXPRESSIONS OF INCOMPLETE BOOLEAN FUNCTIONS

 1. Minimal sums

 2. Minimal products.

EXAMPLE TO ILLUSTRATE HOW TO OBTAIN ESSENTIAL PRIMES

1. f(x,y,z) = äm(0,1,5,7)

 Ans f(x,y,z) = xz + x y

2. f(w,x,y,z) = äm(1,2,3,5,6,7,8,13)

 Ans. f(w,x,y,z) = w z +w y+xyz+w x y z

MINIMAL SUMS

f(w,x,y,z)=äm(0,1,2,3,5,7,11,15)

MINIMAL PRODUCTS

F(w,x,y,z)=äm(1,3,4,5,6,7,11,14,15)

MINIMAL EXPRESSIONS OF INCOMPLETE BOOLEAN FUNCTIONS

f(W,X,Y,Z)=äm(0,1,3,7,8,12) +dc(5,10,13,14)

QUINE ï McCLUSKEY METHOD

 Using K-maps for simplification of Boolean expressions with more than six variables becomes

a tedious and difficult task. Therefore a tabular method illustrate below can be used for the

purpose.

ALGORITHM FOR GENERATING PRIME IMPLICANTS

The algorithm procedure is listed below

1.Express each minterm of the function in its binary representation.

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 26

2. List the minterms by increasing index.

3. Separate the sets of minterms of equal index with lines.

4. Let i = 0.

5. Compare each term of index I with each term of index I+1. For each pair of terms that can

combine which has only one bit position difference.

6. Increase I by 1 and repeat step 5 . The increase of I continued until all terms are compared.

The new list containing all implicants of the function that have one less variable than those

implicants in the generating list.

7. Each section of the new list formed has terms of equal index. Steps 4,5, and 6 are repeated on

this list to form another list. Recall that two terms combine only if they have their dashes in

the same relative positions and if they differ in exactly one bit position.

8. The process terminates when no new list is formed .

9. All terms without check marks are prime implicants.

Example: Find all the prime implicants of the function

f(w,x,y,z) = äm(0,2,3,4,8,10,12,13,14)

Step 1: Represent each minter in its 1-0 notation

no. minterm 1-0 notation index

0

2

3

4

8

10

12

13

14

w x y z

w x y z

w x y z

w x y z

w x y z

w x y z

w x y z

w x y z

w x y z

0 0 0 0

0 0 1 0

0 0 1 1

0 1 0 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 0 1

1 1 1 0

0

1

2

1

1

2

2

3

3

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 27

Step 2: List the minterm in increasing order of their index.

No. w x y z index

0

2

4

8

3

10

12

13

14

0 0 0 0

0 0 1 0

0 1 0 0

1 0 0 0

0 0 1 1

1 0 1 0

1 1 0 0

1 1 0 1

1 1 1 0

Index 0

Index 1

Index 2

Index 3

 W x y z index

0.2

0,4

0,8

2,3

2,10

4,12

8,10

8,12

10,14

12,13

12,14

0 0 ï 0

0 ï 0 0

- 0 0 0

0 0 1 ï

- 0 1 0

- 1 0 0

1 0 ï 0

1 ï 0 0

1 ï 1 0

1 1 0 ï

1 1 - 0

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 28

 w x y z

(0, 2, 8, 10)

(0, 4, 8,12)

__ 0 __ 0

__ __ 0 0(index 0)

(8,10,12,14) 1__ __ 0 (index 1)

F(w,x,y,z)=x z + y z +w z+w x y +w x z

PETRICKôS METHOD OF DETERMINING IRREDUNDANT EXPRESSIONS

FIND THE PRIME IMPLICANTS AND IRREDUNDANT EXPRESSION

F(W,X,Y,Z)= äM(0,1,2,5,7,8,9,10,13,15)

 A=X Y , B= X Z C= Y Z D= X Z

 P = (A+B)(A+C) (B)(C+D)(D)(A+B)(A+C)(B)(C+D)(D)

 P = (A +C)(BD) = ABD +BCD

F1(W,X,Y,Z)= ABD =X Y +X Z +X Z

F2(W,X,Y,Z) = BCD = X Z + Y Z +X Z

DECIMAL METHOD FOR OBTAINING PRIME IMPLICANTS

The prime implicants can be obtained for decimal number represented minterms.In this procedure

binary number are not used to find out prime implicants

 f(w, x,y,z) =äm(0,5,6,7,9,10,13,14,15)

 fsop= xy +xz+xyz+wyz+w x y z

MAP ENTERED VARIABLE(MEV)

It is graphical approach using k-map to have a variable of order n. Where in we are using a K-map

of n-1 variable while map is entered with ouput function and variable.

f(w,x,y.z) = äm(2,3,4,5,13,15) +dc(8,9,10,11)

Ans. fsop= w z +x y + w x y

HDL IMPLEMENTATION METHOD S

A module can be described in any one (or a combination) of the following modeling techniques.

Â Gate-level modeling using instantiation of primitive gates and user defined modules.

 ̧ This describes the circuit by specifying the gates and how they are connected

with each other.

Â Dataflow modeling using continuous assignment statements with the keyword

assign.
 ̧ This is mostly used for describing combinational circuits.

Â Behavioral modeling using procedural assignment statements with keyword always.

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 29

 ̧ This is used to describe digital systems at a higher level of abstraction.

Gate-level modeling: Here a circuit is specified by its logic gates and their interconnections.

È It provides a textual description of a schematic diagram.

È Verilog recognizes 12 basic gates as predefined primitives.

Â 4 primitive gates of 3-state type.

Â Other 8 are: and, nand, or, nor, xor, xnor, not, buf

//Gate-level hierarchical description of 4-bit adder

module halfadder (S,C,x,y);

 input x,y;

 output S,C;

 //Instantiate primitive gates

 xor (S,x,y);

 and (C,x,y);

endmodule

Dataflow Modeling: Dataflow modeling uses continuous assignments and the keyword assign.A

continuous assignment is a statement that assigns a value to a net. The value assigned to the net is

specified by an expression that uses operands and operators.

//Dataflow description of a 2-to-4-line decoder

module decoder_df (A,B,E,D);

 input A,B,E;

 output [0:3] D;

 assign D[0] = ~(~A & ~B & ~E),

 D[1] = ~(~A & B & ~E),

 D[2] = ~(A & ~B & ~E),

 D[3] = ~(A & B & ~E);

endmodule

Behavioral Modeling : Behavioral modeling represents digital circuits at a functional and algorithmic

level.

È It is used mostly to describe sequential circuits, but can also be used to describe

combinational circuits.

È Behavioral descriptions use the keyword always followed by a list of procedural assignment

statements.

È The target output of procedural assignment statements must be of the reg data type.

È A reg data type retains its value until a new value is assigned.

 //Behavioral description of 2-to-1-line multiplexer

module mux2x1_bh(A,B,select,OUT);

 input A,B,select;

 output OUT;

 reg OUT;

 always @(select or A or B)

 if (select == 1) OUT = A;

 else OUT = B;

endmodule

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 30

Unit -3 :Data-Processing Circuits

 Multiplexers

 Demultiplexers

 1-of-16 Decoder

 Encoders

 Exclusive-or Gates

 Parity Generators and Checkers

 Magnitude Comparator

 Programmable Array Logic

 Programmable Logic Arrays, HDL

 Implementation of Data Processing Circuits

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 31

Decoder

A Decoder is a multiple input ,multiple output logic circuit.The block diagram of a decoder is as

shown below.

The most commonly used decoder is a n ïto 2
n
 decoder which ha n inputs and 2

n
 Output lines .

3-to-8 decoder logic diagram

In this realization shown above the three inputs are assigned x0,x1,and x2, and the eight outputs are Z0

to Z7.

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 32

Function specifc decoders also exist which have less than 2
n
 outputs . examples are 8421 code

decoder also called BCD to decimal decoder. Decoders that drive seven segment displays also exist.

Realization of boolean expression using Decoder and OR gate

We see from the above truth table that the output expressions corrwespond to a single minterm. Hence

a n ïto 2
n
 decoder is a minterm generator. Thus by using OR gates in conjunction with a a n ïto 2

n

decoder boolean function realization is possible.

Ex: to realize the Boolean functions given below using decodersé

ÅF1=Ɇm(1,2,4,5)

ÅF2=Ɇm(1,5,7)

Priority encoder

8-3 line priority encoder

In priority encoder a priority scheme is assigned to the input lines so that whenever more than one

input line is asserted at any time, the output is determined by the input line having the highest priority.

The Valid bit is used to indicate that atleast one inut line is asserted. This is done to distinguish the

situation that no input line is asserted from when the X0 input line is asserted , since in both cases

Z1Z2Z3 =000.

4-1 line Multiplexer

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 33

Multiplexers also called data selectors are another MSI devices with a wide range of applications in

microprocessor and their peripherals design. The followind diagrams show the symbol and truth table

for the 4-to ï1 mux.

Programmable Logic Devices

 Most of the circuits presented so far are available on a TTL IC chip. Circuits can be constructed using

these chips and wiring them together.An alternative to this method would be to program all the

components into a single chip, saving wiring, space and power.One type of such device is PLA

(Programmable Logic Array) that contains one or more and/or arrays.

Programmable Logic Devices (PLDs)

PLDôs are Standard logic devices that can be programmed to implement any combinational logic

circuit. Programmable refers to a hardware process used to specify the logic that a PLD implements.

There are various types of PLD devices based on which array is programmable.The Device names and

the type of array are listed in the table below.

Types of PLDs

As an example we will first consider

Programming the ROM

The realization of Boolean expressions using a decoder and or gates was discussed in the earlier

chapter on decoders. A similar approach is used in a PROM since a PROM is a device that includes

Fixed Programmable

ee

PAL

Programmable

e

Programmable

PLA

Programmable

e
Fixed PROM

OR array AND array DEVICE

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 34

both the decoder and the OR gates within the same network.The programming of the PROM is

carried out by blowing the appropriate fuses. Proms are used for Code conversions, generating bit

patterns for characters, and as lookup tables for arithmetic functions.

Example: Let I0I1I3I4 = 00010 (address 2). Then, output 2 of the decoder will be 1, the remaining

outputs will be 0, and ROM output becomes A7A6A5A4A3A2A1A0 = 11000101.

Programmable Logic Arrays (PLAs)

Similar concept as in PROM, except that a PLA does not necessarily generate all possible minterms

(ie. the decoder is not used).More precisely, in PLAs both the AND and OR arrays can be

programmed (in PROM, the AND array is fixed ï the decoder ï and only the OR array can be

programmed).
PLA Example

f(a,b,c) = aôbô + abc

g(a,b,c) = aôbôcô + ab + bc

h(a,b,c) = c

PLAs can be more compact implementations than ROMs, since they can benefit from minimizing the

number of products required to implement a function.

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 35

Programmable Array Logic (PAL)

OR plane (array) is fixed, AND plane can be programmed. A PAL is less Less flexible than PLA

Number of product terms available per function (OR outputs) is limited

PAL-based circuit implementation

W = ABôCô + CD

X = AôBCô + AôCD + ACDô + BCD

Y = AôCôDô + ACD + AôBD

HDL Implementation of Data Processing Circuits

//Gate-level hierarchical description of 4-bit adder

module halfadder (S,C,x,y);

 input x,y;

 output S,C;

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 36

 //Instantiate primitive gates

 xor (S,x,y);

 and (C,x,y);

endmodule

module fulladder (S,C,x,y,z);

 input x,y,z;

 output S,C;

 wire S1,D1,D2; //Outputs of first XOR and two AND gates

 //Instantiate the half adders

 halfadder HA1(S1,D1,x,y), HA2(S,D2,S1,z);

 or g1(C,D2,D1);

endmodule

module decoder_gl (A,B,E,D);

 input A,B,E;

 output[0:3]D;

 wire Anot,Bnot,Enot;

 not

 n1 (Anot,A),

 n2 (Bnot,B),

 n3 (Enot,E);

 nand

 n4 (D[0],Anot,Bnot,Enot),

 n5 (D[1],Anot,B,Enot),

 n6 (D[2],A,Bnot,Enot),

 n7 (D[3],A,B,Enot);

endmodule

//Dataflow description of 2-to-1-line mux

module mux2x1_df (A,B,select,OUT);

 input A,B,select;

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 37

 output OUT;

 assign OUT = select ? A : B;

endmodule

//Behavioral description of 2-to-1-line multiplexer

module mux2x1_bh(A,B,select,OUT);

 input A,B,select;

 output OUT;

 reg OUT;

 always @(select or A or B)

 if (select == 1) OUT = A;

 else OUT = B;

endmodule

//Behavioral description of 4-to-1 line mux

module mux4x1_bh (i0,i1,i2,i3,select,y);

 input i0,i1,i2,i3;

 input [1:0] select;

 output y;

 reg y;

 always @(i0 or i1 or i2 or i3 or select)

 case (select)

 2'b00: y = i0;

 2'b01: y = i1;

 2'b10: y = i2;

 2'b11: y = i3;

 endcase

endmodule

 www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 38

Adders

Adders are the basic building blocks of all arithmetic circuits; adders add two binary numbers and

give out sum and carry as output. Basically we have two types of adders.

Half Adder.

Full Adder

Half Adder

Adding two single-bit binary values X, Y produces a sum S bit and a carry out C-out bit. This

operation is called half addition and the circuit to realize it is called a half adder.

X Y SUM CARRY

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

S (X,Y) = (1,2)

S = X'Y + XY'

S = X Y

CARRY(X,Y) = (3)

CARRY = XY

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 39

Full Adder

Full adder takes a three-bits input. Adding two single-bit binary values X, Y with a carry input bit C-

in produces a sum bit S and a carry out C-out bit.

X Y Z SUM CARRY

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

SUM (X,Y,Z) = (1,2,4,7)

CARRY (X,Y,Z) = (3,5,6,7)

Kmap-SUM

SUM = X'Y'Z + XY'Z' + X'YZ'

SUM = X Y Z

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 40

Kmap-CARRY

CARRY = XY + XZ + YZ

Circuit -SUM

Circuit -CARRY

Multipliers

Multiplication is achieved by adding a list of shifted multiplicands according to the digits of the

multiplier. An n-bit X n-bit multiplier can be realized in combinational circuitry by using an array of

n-1 n-bit adders where each adder is shifted by one position. For each adder one input is the shifted

multiplicand multiplied by 0 or 1 (using AND gates) depending on the multiplier bit, the other input is

n partial product bits.

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 41

Dividers

The binary divisions are performed in a very similar manner to the decimal divisions, as shown in the

below figure examples. Thus, the second number is repeatedly subtracted from the figures of the first

number after being multiplied either with '1' or with '0'. The multiplication bit ('1' or '0') is selected for

each subtraction step in such a manner that the subtraction result is not negative. The division result is

composed from all the successive multiplication bits while the remainder is the result of the last

subtraction step.

This algorithm can be implemented by a series of subtracters composed of modified elementary cells.

Each subtracter calculates the difference between two input numbers, but if the result is negative the

operation is canceled and replaced with a subtraction by zero. Thus, each divider cell has the normal

inputs of a subtracter unit as in the figure below but a supplementary input ('div_bit') is also present.

This input is connected to the b_req_out signal generated by the most significant cell of the subtracter.

If this signal is '1', the initial subtraction result is negative and it has to be replaced with a subtraction

by zero. Inside each divider cell the div_bit signal controls an equivalent 2:1 multiplexer that selects

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 42

between bit 'x' and the bit included in the subtraction result X-Y. The complete division can therefore

by implemented by a matrix of divider cells connected on rows and columns as shown in figure

below. Each row performs one multiplication-and-subtraction cycle where the multiplication bit is

supplied by the NOT logic gate at the end of each row. Therefor the NOT logic gates generate the bits

of the division result.

Carry Lookahead Adder (CLA)

Since each carry generate function Gi and carry propogate function Pi is itself only a function of the

operand variables, the output carry and the input carry at each stage can be expressed as a function of

the operand variablesand the initial carry Co. parallel adders whose realizations are based on the

above equations are called carry look ahead adders. www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 43

Unit -4 : Clocks , Flip Flops

Contents:

Clock Waveforms

TTL Clock

Schmitt Trigger

Clocked D FLIP-FLOP

Edge-triggered D FLIP-FLOP

Edge-triggered JK FLIP-FLOP

FLIP-FLOP Timing

JK Master-slave FLIP-FLOP

Switch Contact Bounce Circuits

Various Representation of FLIP-FLOPs

Analysis of Sequential Circuits

HDL Implementation of FLIP-FLOP

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 44

Introduction :

 Logic circuit is divided into two types.

1. Combinational Logic Circuit

2. Sequential Logic Circuit

Definition :

1. Combinational Logic Circuit :

The circuit in which outputs depends on only present value of inputs. So it is possible to

describe each output as function of inputs by using Boolean expression. No memory element

involved. No clock input. Circuit is implemented by using logic gates. The propagation delay

depends on, delay of logic gates. Examples of combinational logic circuits are : full adder,

subtractor, decoder, codeconverter, multiplexers etc.

2. Sequential Circuits :

Sequential Circuit is the logic circuit in which output depends on present value of inputs at

that instant and past history of circuit i.e. previous output. The past output is stored by using

memory device. The internal data stored in circuit is called as state. The clock is required for

synchronization. The delay depends on propagation delay of circuit and clock frequency. The

examples are flip-flops, registers, counters etc.

Á Basic Bistable element.

o Flip-Flop is Bistable element.

o It consist of two cross coupled NOT Gates.

o It has two stable states.

Combinational
Logic Circuit

inputs outputs

Combinational
Logic Circuit

inputs outputs

Memory Device www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 45

o Q and ̀ Q are two outputs complement of each other.

o The data stored 1 or 0 in basic bistable element is state of flip-flop.

o 1 ï State is set condition for flip-flop.

o 0 ï State is reset / clear for flip-flop.

o It stores 1 or 0 state as long power is ON.

Latches :

S-R Latch : Set-reset Flip-Flop

Á Latch is a storage device by using Flip-Flop.

Á Latch can be controlled by direct inputs.

Á Latch outputs can be controlled by clock or enable input.

Á Q and ̀ Q are present state for output.

Á Q
+
 and ̀ Q

+
 are next states for output.

Á The function table / Truth table gives relation between inputs and outputs.

Á The S=R=1 condition is not allowed in SR FF as output is unpredictable.

Application of SR Latch :

Á A switch debouncer

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 46

Á Bouncing problem with Push button switch.

Á Debouncing action.

Á SR Flip-Flop as switch debouncer.

Gated SR Latch :

Á Enable input C is clock input.

Á C=1, Output changes as per input condition.

Á C=0, No change of state.

Á S=1, R=0 is set condition for Flip-flop.

Á S=0, R=1 is reset condition for Flip-flop.

Á S=R=1 is ambiguous state, not allowed.

JK Flip -Flop by using SR Flip-Flop

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 47

In SR FF, S=R=1 condition is not allowed.

Á JK FF is modified version of SR FF.

Á Due to feedback from output to input AND Gate J=K=1 is toggle condition for JK FF.

Á The output is complement of the previous output.

Á This condition is used in counters.

Á T-FF is modified version of JK FF in which T=J=K=1.

Gated D Latch :

Á D Flip-Flop is Data Flip-Flop.

Á D Flip-Flop stores 1 or 0.

Á R input is complement of S.

Á Only one D input is present.

Á D Flip-Flop is a storage device used in register.

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 48

Master slave SR Flip-Flop

Á Two SR Flip-Flop, 1
st
 is Master and 2

nd
 is slave.

Á Master Flip-Flop is positive edge triggered.

Á Slave Flip-Flop is negative edge triggered.

Á Slave follows master output.

Á The output is delayed.

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 49

Master slave JK Flip-Flop

Á In SR Flip-Flop the input combination S=R=1 is not allowed.

Á JK FF is modified version of SR FF.

Á Due to feedback from slave FF output to master, J=K=1 is allowed.

Á J=K=1, toggle, action in FF.

Á This finds application in counter.

Positive Edge Triggered D Flip-Flop

Á When C=0, the output of AND Gate 2 & 3 is equal to 1.

Á If C=1, D=1, the output of AND Gate 2 is 0 and 3 is 1.

S R 1, No Change of State= = S R 1, Q=1 and Q= = =0 0,

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 50

HDL implementation of Flip-flops

module D_latch(Q,D,control);

 output Q;

 input D,control;

 reg Q;

 always @(control or D)

 if(control) Q = D; //Same as: if(control=1)

endmodule

//D flip -flop

module D_FF (Q,D,CLK);

 output Q;

 input D,CLK;

 reg Q;

 always @(posedge CLK)

 Q = D;

endmodule

//JK flip -flop from D flip -flop and gates
module JKFF (Q,J,K,CLK,RST);

 output Q;

 input J,K,CLK,RST;

 wire JK;

 assign JK = (J & ~Q) | (~K & Q);

//Instantiate D flipflop

 DFF JK1 (Q,JK,CLK,RST);

endmodule

// Functional description of JK // flip-flop

module JK_FF (J,K,CLK,Q,Qnot);

 output Q,Qnot;

 input J,K,CLK;

 reg Q;

 assign Qnot = ~ Q ;

 always @(posedge CLK)

 case({J,K})

 2'b00: Q = Q;

 2'b01: Q = 1'b0;

 2'b10: Q = 1'b1;

 2'b11: Q = ~ Q;

 endcase

endmodule

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 51

Unit -5 : Registers

Contents:

Types of Registers

 Serial In - Serial Out

 Serial In - Parallel out

 Parallel In - Serial Out

 Parallel In - Parallel Out

 Universal Shift Register

 Applications of Shift Registers

 Register Implementation in HDL

www.vt
uc

s.c
om

Logic Design 10CS33

Dept. Of CSE, SJBIT Page 52

An n-bit register is a collection of n D flip-flops with a common clock used to store n related

bits.

Types of Register:

Á Register is a group of Flip-Flops.

Á It stores binary information 0 or 1.

Á It is capable of moving data left or right with clock pulse.

Á Registers are classified as

¶ Serial-in Serial-Out

¶ Serial-in parallel Out

¶ Parallel-in Serial-Out

¶ Parallel-in parallel Out

Parallel-in Unidirectional Shift Register

www.vt
uc

s.c
om

