
Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 1

CHAPTER 1

INTRODUCTION

1.1 COMPUTER GRAPHICS:

Computer Graphics is concerned with all aspect of producing pictures or image using

computer. The field began humble almost 50 years ago, with the display of few lines on the

cathode-ray tube(CRT); now, we can create image using computer that are indistinguishable from

photographs from the real objects. We routinely train pilots with simulated airplane, generating

graphical display of the virtual environment in the real time. Feature length movies made entirely

by computer have been successful, both critically and financially; massive multiplayer game can

involve tens of thousands of concurrent participants.

Graphics is created using computers and, more generally, the representation and manipulation

of pictorial data by a computer. The development of computer graphics has made computers easier

to interact with and better for understanding and interpreting many types of data. Developments in

computer graphics have had a profound impact on many types of media and have revolutionized

the animation and video game industry. The phrase “Computer Graphics” was coined in 1960 by

William Fetter, a graphic designer for Boeing.

In today’s world advanced technology, interactive computer graphics has become a powerful

tool for the production of realistic features. Today’s we find computer graphics used in various

areas that include science, engineering, medicine, business, industry, art, entertainment etc. The

main reason for effectiveness of the interactive computer graphics is the speed with which the user

can understand the displayed information.

The graphics in openGL provides a wide variety of built-in function. The computer graphics

remains one of the most exciting and rapidly growing computer fields. It has become a common

element in user interface, data visualization, TV commercials, motion picture and many other

applications. The current trend of computer graphics is to incorporate more physics principles into

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Representation
http://en.wikipedia.org/wiki/Manipulation
http://en.wikipedia.org/wiki/Pictorial
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Animation
http://en.wikipedia.org/wiki/Video_game

Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 2

3D graphics algorithm to better simulate the complex interactions between objects and lighting

environment.

1.2 OPEN GL (Open Graphics Library):

OpenGL has become a widely accepted standard for developing graphics application. OpenGL

is easy to learn, and it possesses most of the characteristics of other popular graphics system. It is

top-down approach. OpenGL is a standard specification defining a cross-language, cross-platform

API for writing applications that produce 2D and 3D computer graphics. The interface consists of

over 250 different function calls which can be used to draw complex three-dimensional scenes

from simple primitives.

OpenGL was developed by Silicon Graphics Inc. (SGI) in 1992

and is widely used in CAD,

virtual reality, scientific visualization, information visualization, and flight simulation. It is also

used in video games, where it competes with Direct3D on Microsoft Windows platforms.

The interface between the application program and the graphics system can be specified

through that set of function that resides in graphics library. The specification is called the

APPLICATION PROGRAM INTERFACE (API). The application program sees only the API and

is thus shielded from the details both the hardware and software implementation of graphics

library. The software driver is responsible for interpreting the output of an API and converting

these data to a form that is understood by the particular hardware.

Most of our applications will be designed to access openGL directly through functions in three

libraries. Function in the main GL library have name that begin with the letter gl and stored in the

library. The second is the openGL utility Library (GLU). This

library uses only GL function but contains codes for creating common object and viewing.

Rather then using an different library for each system we used available library called openGL

utility toolkit (GLUT). It used as #include<glut.h>

Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 3

A graphics editor is a computer program that allows users to compose and edit pictures

interactively on the computer screen and save them in one of many popular “bitmap” or “raster” a

format such as TIFF, JPEG, PNG and GIF.

Graphics Editors can normally be classified as:

 2D Graphics Editors.

 3D Graphics Editors.

A 3D Graphics Editor is used to draw 3D primitives Rectangles, Circle, polygons, etc and alter

those with operations like cut, copy, paste. These may also contain features like layers and object

precision etc.

3D Graphics Editor should include the following features:

 Facilities: Cursor Movement, Editing picture objects.

 Good User Interface: GUI / Toolbars / Icon based User Interface.

Computer Graphics is concerned with all aspects of producing pictures or images using a

computer. A particular graphics software system called OpenGL, which has become a widely

accepted standard for developing graphics applications .

The applications of computer graphics in some of the major areas are as follows

1. Display of information.

2. Design.

3. Simulation and Animation.

4. User interfaces.

Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 4

OpenGL is a software interface to graphics hardware. This interface consists of about 150

distinct commands that you use to specify the objects and operations needed to produce interactive

three-dimensional applications.

My project named “FLOWING FOUNTAIN MODEL” uses OpenGL software interface and

develops 2D images. This project uses the techniques like Translation, motion, display list,

transformation techniques, etc.

1.3 PROBLEM SECTION STATEMENT

Computer graphics is no longer a rarity. It is an integral part of all computer user interfaces,

and is indispensable for visualizing 2D; 3D and higher dimensional objects .Creating 3D objects,

rotations and any other manipulations are laborious process with graphics implementation using

text editor. OpenGL provides more features for developing 3D objects with few lines by built in

functions.

The geometric objects are the building blocks of any individual .Thereby developing,

manipulating, applying any transformation, rotation, scaling on them is the major task of any

image development.

Thereby we have put our tiny effort to develop 3D objects and perform different operations on

them by using OpenGL utilities.

1.4 EXISTING SYSTEM

The existing system involves computer graphics. Computer graphics started with the display of

data on hardcopy plotters and cathode ray tube screens soon after the introduction of computer

themselves. It includes the creation, storage and manipulation of models and images of objects.

These models include physical , mathematical , engineering , architectural and so on

Computer graphics today is largely interactive –the user controls the contents ,structure and

appearance of objects and their displayed images by using input devices , such as keyboard,

mouse or touch-sensitive panel on the screen.

Interactive computer graphics is the most important means of producing pictures since the

invention of photography and television.

Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 5

1.5 PROPOSED SYSTEM

In proposed system, the OpenGL is a graphic software system designed as a streamlined,

hardware-independent interface to be implemented on many different hardware platforms. To

achieve these qualities, no commands for performing windowing tasks or obtaining user input are

included in OpenGL; instead, you must work through whatever windowing system controls the

particular hardware you're using.

OpenGL doesn't provide high-level commands for describing models of three-dimensional

objects. Such commands might allow you to specify relatively complicated shapes such as

automobiles, parts of the body, airplanes, or molecules. With OpenGL, you must build up your

desired model from a small set of geometric primitives - points, lines, and polygons.

Application

program

Fig1.1: Application programmers model of graphics system

The interface between an application program and a graphics system can be specified through

a set of functions the resides in a graphics library .These specification are called the application

programmer’s interface (API).The application programmer see only the API and is thus shielded

from the details of both the hardware and the

Applicatio

n program

Graphics

library

(API)

Drivers Mouse

Keyboard

Display

Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 6

software implementation of the graphics library. The software drivers are responsible for

interpreting the output of the API and converting this data to a form that is understood by the

particular hardware.

1.6 OBJECTIVES OF THE PROJECT

 Developing a package using computer graphics with OpenGL.

 Migration from text editor to OpenGL.

 To show that implementation of Translation is easier with OpenGL.

 Implementing certain technical concept like Translation, motion, and use of Idle

Function.

 How to use Lightning effects used to produce computer animation.

Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 7

CHAPTER 2

LITERATURE SURVEY

In late 1960’s the development of Free-form curves and surfaces for computer graphics begins.

Free-form curves and surfaces where developed to describe curved 3-D objects without using

polyhedral representations which are bulky and intractable. To get a precise curve with polygons

might require thousands of faces, whereas a curved surface requires much less calculations. The

UNISURF CAD system was created for designing cars which utilized the curve theories.

A research was made, but was never published so designers get most of the credit. The men

were pioneers in Computer Aided Geometric Design (CAGD) for the auto industry, which

replaced the use of hand drawn French-curve templates in design of auto bodies. The curves were

based on Berstein Polynomials which had been developed by the mathematician Berstein much

earlier. Another kind of basic curve predated that was the Hermite Curve developed by the

mathematician C. Hermite. Also in the same era as, Schonenberg, a mathematician at the

University of Wisconsin was working on Mathematical Splines, which would influence the work

of S. Coons at MIT in Splines, Bicubic Surface Patches, Rational Polynomials around 1968. A

surface patch is freeform curved surface defined by two or more curves.

In 1973, designers based their research into Parametric B-Splines on Coon’s work. The main

difference between B-Splines and Bezier curves is the former allows for local control of key

control points and the later has more of a global control system. B-Splines are also faster to

calculate for a computer than cubic polynomial based curves like the Hermite and Bezier.

Riesenfeld’s pioneering development of B-Splines later influenced the E. Catmull’s research at

Utah.

Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 8

The "FLOWING FOUNTAIN MODEL". It depicts a 3 Dimensional model of a fountain

through which water is continuously flowing out in its idle state. The water gets stored into a small

reservoir. The water flows out through different levels in the fountain, giving it a realistic look.

User can specify these levels as three, four or five at the beginning.

The program starts with a menu on the screen giving you the options as mention below:

o Proceed.

o Help.

o Exit.

The user is provided with an option to change the color of the fountain using the RIGHT

MOUSE BUTTON. The user can view the fountain from different angles including a Top-view

and can also zoom in or zoom out. This can be controlled using a set of specified keys on

keyboard such as ‘N’ and ‘A’ for ZOOM IN and ZOOM OUT, buttons ‘T’ and ‘F’ for TOP and

FRONT VIEW etc. Clicking on the RIGHT MOUSE BUTTON shows a sub menu -'Help' which

displays the keyboard shortcuts for various controls. The third option ‘Exit’ pops out of the

program.

The project is based on Simple window coordinates and using recursive techniques in OpenGL.

Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 9

CHAPTER 3

SPECIFICATIONS & REQUIREMENTS

3.1 Hardware requirements:

 Pentium or higher processor.

 16 MB or more RAM.

 A standard keyboard, and Microsoft compatible mouse

 VGA monitor.

 If the user wants to save the Created files a secondary storage medium can be

Used.

3.2 Software requirements:

 The graphics package has been designed for OpenGL; hence the machine must

have Eclipse.

 Software installed preferably 6.0 or later versions with mouse driver installed.

 Turbo c Libraries are used and hence a TC version 2 or later is required.

3.3 Development platform: Ubuntu 10.10.

Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 10

CHAPTER 4

SOFTWARE DESIGN

Movement of a drop:

The movement of a drop contains two factors.

The direction, how the drop gets out of the fountain and the gravity. The position of a drop is

pretty easy to compute if we know, how much time has passed since the drop has leaved the

fountain.

We have to multiplicate the vector of the constant moving (how the drop leaves the fountain)

with the time and then subtract the squared time multiplicated with an acceleration factor. This

acceleration factor contains the weight of a drop and the power of gravity. We now have to know

the direction, how the drop comes out of the fountain, but this is just a bit calculating with sine

and cosine.

Blending means that a pixel on the screen isn't replaced by another one, but they are "mixed".

Therefore you can use the alpha value of colors, it indicates how much of the color of the

consisting pixel is used for the new color - for antialiasing of points, OpenGL computes this alpha

value.

After calling glEnable(GL_BLEND); you have to tell OpenGL how to use the alpha values. It

isn't specified, that a higher alpha-value means more transparency or something like that. You can

use them as you want. To tell OpenGL _what_ you want, you must use glBlendFunc(). It takes

two parameters, one for the source factor and the second for the destination factor. I used

GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA as parameters. This is quite an often used

combination and affects, that the higher the alpha value, the less transparency of the incoming

fragment

Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 11

CHAPTER 5

IMPLEMENTATION

Step 1: [To create a fountain]

Declare a class called CDrop.

In GetNewPosition (), we calculate the position and delay of each drop with respect to the co-

ordinate axes.

Step 2: [function createlist ()]

Dynamically allocate memory for the required vertices.

Function glGenLists used to generate a contiguous set of empty display lists.

Then specify a series of ‘for ‘loops to construct the top and bottom of the stone.

Then create a qaudrilateral to represent the ground.

To create water, use the following functions:

GlTranslatef () – is to calculate water and stone height.

rand () function is used to generate random unique numbers, for each time it is executed.

Step 3: [function InitFountain ()]

Create fountain drops and vertices. Declare StepAngle, the angle which the ray gets out of the

fountain and RayAngle, the angle you see when you look down on the fountain. Use sine () and

Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 12

cosine () functions inside for loops, to calculate the speed of each step in the fountain, how many

steps are required, that a drop comes out and falls down again.

Step 4: [Displaying]

[Keyboard function]

Manages operations by various keys pressed on the key board

[Display function]

Renders the program on to the screen.

Uses the following functions:

GlClear (GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)- Indicates the buffers

currently enabled for color writing and also indicates the depth buffer.

GlPushMatrix (), glPopMatrix () — to push and pop the current matrix stack.

DrawTextXY () — used to set the text of the program.

glFlush () — force execution of GL commands in finite time.

GlutSwapBuffers ()-Swap the buffers ->make the result of rendering visible.

[reshape function]

glMatrixMode (GL_PROJECTION) -applies subsequent matrix operations to the projection

matrix stack.

glMatrix

Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 13

Mode (GL_MODELVIEW)-applies subsequent matrix operations to the model view matrix

stack.

We adjust the viewing volume. We use the whole window for rendering and adjust point size to

window size.

Step 5: [main function]

Here we specify the initial display mode, window size and position. Create a new window

where the output is rendered. Create menus to move near, move away, move down, move up and

sub-menus for color, flow, level, and help.

Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 14

CHAPTER 6

SNAPSHOTS

Fig 6.1 Start Screen

Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 15

Fig 6.2 Help Menu

Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 16

Fig 6.3 Flowing Fountain

Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 17

CHAPTER 7

CONCLUSION AND FUTURE SCOPE

An attempt has been made to develop an OpenGL package which meets necessary

requirements of the user successfully. Since it is user friendly, it enables the user to interact

efficiently and easily.

The development of the mini project has given us a good exposure to OpenGL by which we

have learnt some of the technique which help in development of animated pictures, gaming.

Hence it is helpful for us even to take up this field as our career too and develop some other

features in OpenGL and provide as a token of contribution to the graphics world.

Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 18

APPENDIX

#include <GL/glut.h>

#include <stdlib.h>

#include <math.h>

#include <stdio.h>

#include <string.h>

#include <iostream>

#define PI 3.14152653597689786

#define RandomFactor 2.0

#define ESCAPE 27

#define TEXTID 3

unsigned int i;

int flag=0,f=2;

int vflag=0;

GLfloat xt=0.0,yt=0.0,zt=0.0;

GLfloat xangle=0.0,yangle=0.0,zangle=0.0;

GLfloat X[3];

GLint ListNum;

GLfloat OuterRadius = 2.4;

GLfloat InnerRadius = 2.0;

GLint NumOfVerticesStone = 6;

GLfloat StoneHeight = 0.5;

GLfloat WaterHeight = 0.45;

struct SVertex

{

GLfloat x,y,z;

};

class CDrop

{

private:

GLfloat time;

SVertex ConstantSpeed;

GLfloat AccFactor;

Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 19

public:

void SetConstantSpeed (SVertex NewSpeed);

void SetAccFactor(GLfloat NewAccFactor);

void SetTime(GLfloat NewTime);

void GetNewPosition(SVertex * PositionVertex);

};

void CDrop::SetConstantSpeed(SVertex NewSpeed)

{

ConstantSpeed = NewSpeed;

}

void CDrop::SetAccFactor (GLfloat NewAccFactor)

{

AccFactor = NewAccFactor;

}

void CDrop::SetTime(GLfloat NewTime)

{

time = NewTime;

}

void CDrop::GetNewPosition(SVertex * PositionVertex)

{

SVertex Position;

time += 0.15;

Position.x = ConstantSpeed.x * time;

Position.y = ConstantSpeed.y * time - AccFactor * time *time;

Position.z = ConstantSpeed.z * time;

PositionVertex->x = Position.x;

PositionVertex->y = Position.y + WaterHeight;

PositionVertex->z = Position.z;

if (Position.y < 0.0)

{

time = time - int(time);

if (time > 0.0) time -= 1.0;

}

}

CDrop * FountainDrops;

Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 20

SVertex * FountainVertices;

GLint Steps = 4;

GLint RaysPerStep =8;

GLint DropsPerRay = 80;

GLfloat DropsComplete = Steps * RaysPerStep * DropsPerRay;

GLfloat AngleOfDeepestStep = 80;

GLfloat AccFactor = 0.011;

void CreateList(void)

{

SVertex * Vertices = new SVertex[NumOfVerticesStone*3];

ListNum = glGenLists(1);

for (GLint i = 0; i<NumOfVerticesStone; i++)

{

Vertices[i].x = cos(2.0 * PI / NumOfVerticesStone * i) * OuterRadius;

Vertices[i].y = StoneHeight;

Vertices[i].z = sin(2.0 * PI / NumOfVerticesStone * i) * OuterRadius;

}

for (i = 0; i<NumOfVerticesStone; i++)

{

Vertices[i + NumOfVerticesStone*1].x = cos(2.0 * PI / NumOfVerticesStone *

i) * InnerRadius;

Vertices[i + NumOfVerticesStone*1].y = StoneHeight;

Vertices[i + NumOfVerticesStone*1].z = sin(2.0 * PI / NumOfVerticesStone *

i) * InnerRadius;

}

for (i = 0; i<NumOfVerticesStone; i++)

{

Vertices[i + NumOfVerticesStone*2].x = cos(2.0 * PI / NumOfVerticesStone *

i) * OuterRadius;

Vertices[i + NumOfVerticesStone*2].y = 0.0;

Vertices[i + NumOfVerticesStone*2].z = sin(2.0 * PI / NumOfVerticesStone *

i) * OuterRadius;

}

glNewList(ListNum, GL_COMPILE);

glBegin(GL_QUADS);

glColor3ub(0,105,0);

glVertex3f(-OuterRadius*10.0,0.0,OuterRadius*10.0);

glVertex3f(-OuterRadius*10.0,0.0,-OuterRadius*10.0);

glVertex3f(OuterRadius*10.0,0.0,-OuterRadius*10.0);

Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 21

glVertex3f(OuterRadius*10.0,0.0,OuterRadius*10.0);

for (int j = 1; j < 3; j++)

{

if (j == 1) glColor3f(1.3,0.5,1.2);

if (j == 2) glColor3f(0.4,0.2,0.1);

for (i = 0; i<NumOfVerticesStone-1; i++)

{

glVertex3fv(&Vertices[i+NumOfVerticesStone*j].x);

glVertex3fv(&Vertices[i].x);

glVertex3fv(&Vertices[i+1].x);

glVertex3fv(&Vertices[i+NumOfVerticesStone*j+1].x);

}

glVertex3fv(&Vertices[i+NumOfVerticesStone*j].x);

glVertex3fv(&Vertices[i].x);

glVertex3fv(&Vertices[0].x);

glVertex3fv(&Vertices[NumOfVerticesStone*j].x);

}

glEnd();

glTranslatef(0.0,WaterHeight - StoneHeight, 0.0);

glBegin(GL_POLYGON);

for (i = 0; i<NumOfVerticesStone; i++)

{

glVertex3fv(&Vertices[i+NumOfVerticesStone].x);

GLint m1,n1,p1;

m1=rand()%255;

n1=rand()%255;

p1=rand()%255;

glColor3ub(m1,n1,p1);

}

glEnd();

glEndList();

}

GLfloat GetRandomFloat(GLfloat range)

{

return (GLfloat)rand() / (GLfloat)RAND_MAX * range * RandomFactor;

}

void InitFountain(void)

{

FountainDrops = new CDrop [(int)DropsComplete];

Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 22

FountainVertices = new SVertex [(int)DropsComplete];

SVertex NewSpeed;

GLfloat DropAccFactor;

GLfloat TimeNeeded;

GLfloat StepAngle;

GLfloat RayAngle;

GLint i,j,k;

for (k = 0; k <Steps; k++)

{

for (j = 0; j < RaysPerStep; j++)

{

for (i = 0; i < DropsPerRay; i++)

{

DropAccFactor = AccFactor + GetRandomFloat(0.0005);

StepAngle = AngleOfDeepestStep + (90.0-AngleOfDeepestStep)

* GLfloat(k) / (Steps-1) + GetRandomFloat(0.2+0.8*(Steps-k-1)/(Steps-1));

NewSpeed.x = cos (StepAngle * PI / 180.0) * (0.2+0.04*k);

NewSpeed.y = sin (StepAngle * PI / 180.0) * (0.2+0.04*k);

RayAngle = (GLfloat)j / (GLfloat)RaysPerStep * 360.0;

NewSpeed.z = NewSpeed.x * sin (RayAngle * PI /180.0);

NewSpeed.x = NewSpeed.x * cos (RayAngle * PI /180.0);

TimeNeeded = NewSpeed.y/ DropAccFactor;

FountainDrops[i+j*DropsPerRay+k*DropsPerRay*RaysPerStep].SetConstantSpeed (

NewSpeed);

FountainDrops[i+j*DropsPerRay+k*DropsPerRay*RaysPerStep].SetAccFactor

(DropAccFactor);

FountainDrops[i+j*DropsPerRay+k*DropsPerRay*RaysPerStep].SetTime(TimeNeeded

* i / DropsPerRay);

}

}

}

glEnableClientState(GL_VERTEX_ARRAY);

glVertexPointer(3,

GL_FLOAT,

0,

FountainVertices);

}

void randcolor()

Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 23

{

GLint a,b,c;

a=rand()%101;

b=rand()%101;

c=rand()%101;

X[0]=(GLfloat)a/100.0;

X[1]=(GLfloat)b/100.0;

X[2]=(GLfloat)c/100.0;

}

void DrawFountain(void)

{

if(flag==0)

glColor3f(1,1,1);

else if(flag==1)

glColor3fv(X);

else if(flag==2)

glColor3f(0.0,1.0,0.0);

else

glColor3f(0.0,1.0,1.0);

for (int i = 0; i < DropsComplete; i++)

{

FountainDrops[i].GetNewPosition(&FountainVertices[i]);

}

glDrawArrays(GL_POINTS,

0,

DropsComplete);

glutPostRedisplay();

}

void colours(int id)

{

flag=id;

if(flag==1)

randcolor();

glutPostRedisplay();

}

void flow(int id)

{

RaysPerStep=id;

Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 24

glutPostRedisplay();

}

void level(int id)

{

Steps=id;

glutPostRedisplay();

}

void help(int id)

{

glutPostRedisplay();

}

void CMain(int id)

{

}

void NormalKey(GLubyte key, GLint x, GLint y)

{

if(f==0)

{

switch (key)

{

case 13:

case '1': f=3; break;

case '2': f=1; break;

case '3':

case '4': case 'b': f=2; break;

case ESCAPE: exit(0);

glutPostRedisplay();

}

}

else if(f==1)

{

if(key=='b'||key=='B')

f=0;

else

f=3;

glutPostRedisplay();

}

Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 25

else if(f==2)

{ f=0;

}

else

{

switch (key)

{

case ESCAPE :

printf("Thank You\nAny Suggestions??????\n\n\n");

exit(0);

break;

case 't': case 'T':

vflag=3;

glutPostRedisplay();

break;

case 'f': case 'F':

vflag=33;

glutPostRedisplay();

break;

case 'd': case 'D':

vflag=2;

glutPostRedisplay();

break;

case 'u': case 'U':

vflag=22;

glutPostRedisplay();

break;

case 'a': case 'A':

vflag=1;

glutPostRedisplay();

break;

case 'n': case 'N':

vflag=11;

Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 26

glutPostRedisplay();

break;

case 'b': case 'B':

f=0;

glutPostRedisplay();

break;

case 'h': case 'H':

f=1;

glutPostRedisplay();

break;

default:

break;

}

}

}

void DrawTextXY(double x,double y,double z,double scale,char *s)

{

int i;

glPushMatrix();

glTranslatef(x,y,z);

glScalef(scale,scale,scale);

for (i=0;i < strlen(s);i++)

glutStrokeCharacter(GLUT_STROKE_MONO_ROMAN,s[i]);

glPopMatrix();

}

void Display(void)

{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glLoadIdentity();

glClearColor(0,0,100,1.0);

glTranslatef(0.0,0.0,-6.0);

glTranslatef(0.0,-1.3,0.0);

if(vflag==1)

{

Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 27

zt-=0.06;

}

glTranslatef(xt,yt,zt);

if(vflag==11)

{

zt+=0.06;

}

glTranslatef(xt,yt,zt);

if(vflag==2)

{

yt -= 0.05;

}

glTranslatef(xt,yt,zt);

if(vflag==22)

{

yt += 0.05;

}

glTranslatef(xt,yt,zt);

if(vflag==3)

{

if(xangle<=80.0)

xangle += 5.0;

}

if(vflag==33)

{

if(xangle>=-5)

xangle -= 5.0;

}

glColor3f(1.0,0.0,0.0);

glRotatef(xangle,1.0,0.0,0.0);

vflag=0;

glRotatef(45.0,0.0,1.0,0.0);

glPushMatrix();

glCallList(ListNum);

glPopMatrix();

Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 28

DrawFountain();

glFlush();

glutSwapBuffers();

}

void menu1()

{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glLoadIdentity();

glClearColor(0,0,0,0.0);

glTranslatef(0.0,0.0,-6.0);

glTranslatef(0.0,-1.3,0.0);

glColor3f(1.00,0.20,0.10);

glLoadName(TEXTID);

DrawTextXY(-2.7,3.5,0.0,0.003," FOUNTAIN ");

glColor3f(0.6,0.8,0.7);

DrawTextXY(-1.25,2.4,0.0,0.0014," MENU ");

glColor3f(1.0,0.8,0.4);

DrawTextXY(-1.25,2.1,0.0,0.001," 1 : PROCEED ");

DrawTextXY(-1.25,1.9,0.0,0.001," 2 : HELP ");

DrawTextXY(-1.25,1.7,0.0,0.001," 3 : EXIT ");

DrawTextXY(-1.25,1.5,0.0,0.001," 4 : BACK");

glFlush();

glutSwapBuffers();

}

void menu2()

{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glLoadIdentity();

glClearColor(0,0,0,1.0);

glTranslatef(0.0,0.0,-6.0);

glTranslatef(0.0,-1.3,0.0);

glColor3f(0.6,0.8,0.7);

DrawTextXY(-2.7,3.5,0.0,0.003," HELP ");

glColor3f(1.0,0.8,0.4);

DrawTextXY(-1.75,2.4,0.0,0.0014," Keyboard Controls : ");

glColor3f(0.9,0.8,0.9);

DrawTextXY(-1.25,2.1,0.0,0.001," Move Near -> N ");

DrawTextXY(-1.25,1.9,0.0,0.001," Move Away -> A ");

DrawTextXY(-1.25,1.5,0.0,0.001," Move Up -> U ");

Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 29

DrawTextXY(-1.25,1.3,0.0,0.001," Move Down -> D ");

DrawTextXY(-1.25,0.9,0.0,0.001," Top View -> T ");

DrawTextXY(-1.25,0.7,0.0,0.001," Front View -> F ");

DrawTextXY(-1.25,0.3,0.0,0.001," Open HELP -> H ");

DrawTextXY(-1.25,0.1,0.0,0.001," Open MENU -> B ");

glColor3f(0.9,0.9,0.8);

DrawTextXY(1,-0.4,0.0,0.001," Press any KEY ... ");

glFlush();

glutSwapBuffers();

}

void cover()

{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glLoadIdentity();

glClearColor(0,0,0,0.0);

glTranslatef(0.0,0.0,-6.0);

glTranslatef(0.0,-1.3,0.0);

glColor3f(1.00,0.20,0.10);

glLoadName(TEXTID);

DrawTextXY(-1.7,3.5,0.0,0.001," GRAPHICAL IMPLEMENTATION OF ");

glColor3f(0.6,0.8,0.7);

DrawTextXY(-1.75,3,0.0,0.0014," FLOWING FOUNTAIN ");

glColor3f(0.7,0.6,0.1);

DrawTextXY(-3.25,1.5,0.0,0.0007," Submitted by :- ");

glColor3f(1.0,0.5,0.0);

DrawTextXY(-2.5,1.2,0.0,0.001," EATI TIWARI ");

DrawTextXY(1,1.2,0.0,0.001," ESHITA TICKU ");

glColor3f(0.7,0.8,0.6);

DrawTextXY(-2.5,0.95,0.0,0.001," (1CE08CS021) ");

DrawTextXY(1,0.95,0.0,0.001," (1CE08CS022) ");

glColor3f(0.7,0.6,0.1);

DrawTextXY(-1.25,0,0.0,0.0007," Under the guidance of : ");

glColor3f(1.0,0.8,0.4);

DrawTextXY(-1.25,-.2,0.0,0.001," MR MUKESH KAMATH");

DrawTextXY(-1,-.5,0.0,0.0007," Lecturer,Dept. of CSE ");

DrawTextXY(-1,-.7,0.0,0.001," CITY ENGINEERING COLLEGE");

glColor3f(0.3,0.3,0.3);

DrawTextXY(-1,-1,0.0,0.0008," Press any key... ");

glFlush();

Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 30

glutSwapBuffers();

}

void Dis()

{

if(f==0)

menu1();

else if(f==1)

menu2();

else if(f==2)

cover();

else

Display();

}

void Reshape(int x, int y)

{

if (y == 0 || x == 0) return;

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluPerspective(50.0,(GLdouble)x/(GLdouble)y,0.10,20.0);

glMatrixMode(GL_MODELVIEW);

glViewport(0,0,x,y);

glPointSize(GLfloat(x)/600.0);

}

int main(int argc, char **argv)

{

glutInit(&argc, argv);

printf("KeyboardControls\n");

printf("'x'-topview\n");

printf("'d'-movedown\n");

printf("'u'-moveup\n");

printf("'a'-moveaway\n");

printf("'n'-movenear\n");

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);

glutInitWindowSize(1024,768);

glutInitWindowPosition(0,0);

glutCreateWindow("Fountain");

glEnable(GL_DEPTH_TEST);

glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA);

Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 31

glEnable(GL_LINE_SMOOTH);

glEnable(GL_BLEND);

glLineWidth(2.0);

glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);

InitFountain();

CreateList();

glutDisplayFunc(Dis);

glutReshapeFunc(Reshape);

glutKeyboardFunc(NormalKey);

int sub_menu=glutCreateMenu(colours);

glutAddMenuEntry("RANDOM",1);

glutAddMenuEntry("GREEN",2);

glutAddMenuEntry("BLUE",3);

int sub_menu2=glutCreateMenu(flow);

glutAddMenuEntry("LOW",8);

glutAddMenuEntry("MEDIUM",10);

glutAddMenuEntry("HIGH",20);

int sub_menu3=glutCreateMenu(level);

glutAddMenuEntry("3 LEVELS",3);

glutAddMenuEntry("4 LEVELS",4);

glutAddMenuEntry("5 LEVELS",5);

int sub_menu4=glutCreateMenu(help);

glutAddMenuEntry("KEYBOARD CONTROLS:",0);

glutAddMenuEntry("Move Near: n",1);

glutAddMenuEntry("Move Away: a",2);

glutAddMenuEntry("Move Down: d",3);

glutAddMenuEntry("Move Up: u",4);

glutAddMenuEntry("Vertical 360: x",5);

glutAddMenuEntry("EXIT",6);

glutCreateMenu(CMain);

glutAddSubMenu("Colors",sub_menu);

glutAddSubMenu("Help",sub_menu4);

glutAttachMenu(GLUT_RIGHT_BUTTON);

glutIdleFunc(Dis);

glutMainLoop();

return 0;

}

Flowing Fountain

Dept. of CSE,CEC 2010-2011 Page 32

BIBLIOGRAPHY

 Edward Angel’s Interactive Computer Graphics Pearson Education 5
th

 Edition

WEBSITES

 www.OpenGL Redbook.

 www.OpenGL simple examples.

 www.OpenGL programming guide.

