

 i

ABSTRACT

A 2d graphics based game helicopter is a great start for a student who starts learning

computer graphics & visualization. The development of the game has large scope to

learn computer graphics from scratch. We used OpenGL utility toolkit to implement

the algorithm, written it in c++ language.

 There is still scope left in the development of project like, after“game over”

a list should show top ten scorers, a need to embed a button “play again”. Welcome

screen need more modification there is scope of embedding buttons like “about”,

“how to play”, “configuration”, “profiles”, etc. In future we hope we would

implement it in source code for better experience of playing this game.

 Finally, we could say by developing the game we have learnt the basics of f

computer graphics and in future by developing it further we shall learn more. It will

be our pleasure if we could develop in 3d graphics package.

 ii

ACKNOWLEDGEMENT

While presenting our project on Helicopter, we feel that it is our duty to

acknowledge the help rendered to us by various persons.

 We would like to convey our thanks to the principal & HOD(CSE) Dr.S.Balaji

(CEC, Bangalore) for being kind enough to provide me an opportunity to do a project

in this institution.

 We would greatly mention the enthusiastic influence provided by Mr. Mukesh

Kamath, our project guide, for his ideas and co-operation showed on us during the

venture and making this project a great success.

 We are very much pleasured to express our sincere gratitude to the friendly co-

operation showed by all the staff members of Computer Science Department, CEC.

 iii

CONTENTS

INDEX PAGE NO

1. Introduction

 1.1 Computer Graphics 01

 1.2 OpenGL 03

 1.3 2D Helicopter 04

2. Basic OpenGL Commands and Functions

2.1 Commands 05

2.2 Viewing 05

2.3 OpenGL lighting function 07

2.4 Blending, Antialiasing and Fog 09

2.5 Bitmaps and Fonts 09

3. Basic OpenGL Utility Toolkit 11

4. System Requirements 15

5. Analysis and Design

5.1 Analysis 16

5.2 Design 17

6. Snap shot 19

7. Conclusion 21

 Bibliography 22

 Appendix A: Source code 23

 iv

Chapter 1

INTRODUCTION

1.1 Computer Graphics

Computer graphics is one of the most exiciting and rapidly growing computer fields. It is also

an extremely effective medium for communication between man and computer; a human being

can understand the information content of a displayed diagram or perspective view much faster

than he can understand a table of numbers or text containing the same information. Thus

computer graphics is being used more extensively.

There is a lot of development in hardware and software required to generate images, and

nowadays the Cost of hardware and software is dropping rapidly. Due to this, interactive

computer graphics is becoming available to more and more people.

Computer graphics started with the display of data on hardcopy plotters and cathode ray tube

(CRT) screens soon after the introduction of computers themselves. It has grown to include the

creation, storage and manipulation of models and manipulation of models and images of

objects. These models come from a diverse and expanding set of fields, and include physical,

mathematical, engineering, architectural, and even conceptual structures, natural phenomena,

and so on.

Computer graphics today is largely interactive. The user controls the contents, structure and

appearance of objects and their displayed images by using input devices, such as a keyboard,

mouse, or touch sensitive panel on the screen. The handling of such devices is included in the

study of computer graphics, because of the close relationship between the input devices and the

display.

1.1.1 Computer Graphics Architecture

Early graphics system used general purpose computers with the standard von Neumann

architecture, such computers are characterized by a single processing unit that processes a

single instruction at a time. The display in these systems was based on a calligraphic CRT

display that included the necessary circuitry to generate the line segment connecting two

points. The job of first computer was to run the application program and to compute the

endpoints of the line segment in the image. This information had to be sent to the display at a

rate high enough to avoid flickers on the display.

Figure 1.1 Early Graphics System

 HOST

 Digital to

 Analogy

 v

To reduce the burden of basic systems we use the following support applications.

1. Display processor

2. Pipeline architecture

3. Graphics pipeline

4. Vertex processing

5. Clipping and primitive assembly

6. Rasterization

7. Fragment processing

Figure1.2 Display Processor Architecture

1.1.2 Application of Computer Graphics

The development of computer graphics has been driven both by the needs of user community

and by advances in hardware and software.

The four major areas are:

1. Display of information

Classical graphics techniques are used as a medium to convey information among people. In

ancient times Greeks were able to convey their architectural ideas graphically even though the

relevant mathematics was not developed.

Today the same type of information is generated by architectures mechanical designers and

drafts people using computer based drafting system.

2. Design

Professionals such as engineering and architecture are concerned with design. Starting with a

set of specifications, engineers and architects seek cost effective and esthetic solution that

satisfies the specifications. Design is an iterative process.

3. Simulation and Animation

Once graphics system evolved to be capable of generating sophisticated images in real time,

engineers and researchers began to use them as simulators. Graphical flight simulator as

proved to increase safety and reduce training expenses, Use of graphics for animation in

television, motion pictures and advertising industry.

 HOST

 Display

 Processor

 Display List

 vi

4. User interfaces

Our interaction with computers has become dominated by visual paradigm that includes

windows, icons, menus and a pointing device such as a mouse. More recently millions of

people have become internet users. Their access is through graphical network browsers such as

firefox and internet explorer.

 vii

 1.2 OpenGL

OpenGL is a software interface to graphics hardware. This interface consists of about

150 distinct commands that you use to specify the objects and operations needed to

produce interactive three-dimensional applications.

OpenGL is designed as a streamlined, hardware-independent interface to be

implemented on many different hardware platforms.

To achieve these qualities, no commands for performing windowing tasks or

obtaining user input are included in OpenGL. Instead, you must work through

whatever windowing system controls the particular hardware you're using.

Similarly, OpenGL doesn't provide high-level commands for describing models of

three-dimensional objects. Such commands might allow you to specify relatively

complicated shapes such as automobiles, parts of the body, airplanes, or molecules.

With OpenGL, you must build up your desired model from a small set of geometric

primitives - points, lines, and polygons.

A sophisticated library that provides these features could certainly be built on top of

OpenGL.

The OpenGL Utility Library (GLU) provides many of the modeling features, such as

quadric surfaces and NURBS curves and surfaces. GLU is a standard part of every

OpenGL implementation. Also, there is a higher-level, object-oriented toolkit, Open

Inventor, which is built atop OpenGL, and is available separately for many

implementations of OpenGL.

OpenGL (Open Graphics Library) is a standard specification defining a cross-

language, cross-platform API for writing applications that produce 2D and 3D. The

interface consists of over 250 different function calls which can be used to draw

complex three-dimensional scenes from simple primitives.

OpenGL was developed by Silicon Graphics Inc. (SGI) in 1992 and is widely used in

CAD, virtual reality, scientific visualization, information visualization, and flight

simulation. It is also used in video games, where it competes with Direct3D on

Microsoft Windows platforms. OpenGL is managed by the non-profit technology

consortium, the Khronos Group.

 viii

Figure1.3 Order of operation in OpenGL rendering pipeline

1.3 2DHelicopter

This mini project under Computer Graphics & Visualization Laboratory is an implementation

of a kind popular helicopter game using the OpenGL Graphics Library and GLUT Toolkit.

Scope

The player input his/her name before starting the game & can control it either using keyboard

or mouse at a time and at the end of game it will show how much distance you covered as

his/her score.

Objective

The objective of the game is to fly a helicopter in space with restricted upward and downward

motion using either mouse or keyboard, meanwhile walls will move towards player’s copter

and player have to avoid a collision between them. The game will enter into next level as soon

as player crosses next 50 unit distance and speed of wall will increase by a certain amount each

time player enter next level. The game will be over if a collision occurring there.

Mouse function: -

On right click down, copter moves upward,

On releasing it moves downward.

Keyboard function: -

Pressing UP key move copter up and down if press DOWN key.

 ix

Chapter 2

BASIC OpenGL COMMANDS & FUNCTIONS

2.1 Commands

void glBegin(GLenum mode)

Marks the beginning of a vertex-data list that describes a geometric primitive. The

type of primitive is indicated by mode, which can be any of the values shown in

GL_POINTS: - individual points

GL_LINES: - pairs of vertices interpreted as individual line segments

GL_LINE_STRIP: - series of connected line segments

GL_LINE_LOOP: - same as above, with a segment added between last and first

vertices

GL_TRIANGLES: - triples of vertices interpreted as triangles

GL_TRIANGLE_STRIP: - linked strip of triangles

GL_TRIANGLE_FAN: - linked fan of triangles

GL_QUADS: - quadruples of vertices interpreted as four-sided polygons

GL_QUAD_STRIP: - linked strip of quadrilaterals

GL_POLYGON: - boundary of a simple, convex polygon

void glEnd(void);

Marks the end of a vertex-data list.

2.2 Viewing
2.2.1 The viewing transformation

void gluLookAt(GLdouble eyex, GLdouble eyey, GLdouble eyez, GLdouble centerx,

GLdouble centery, GLdouble centerz, GLdouble upx, GLdouble upy, GLdouble upz);

Defines a viewing matrix and multiplies it to the right of the current matrix. The

desired viewpoint is specified by eyex, eyey, and eyez. The centerx, centery, and

centerz arguments specify any point along the desired line of sight, but typically

they're some point in the center of the scene being looked at. The upx, upy, and upz

arguments indicate which direction is up (that is, the direction from the bottom to the

top of the viewing volume).

2.2.2 Modeling transformation

 Translate

void glTranslate{fd}(TYPEx, TYPE y, TYPEz);

 x

Multiplies the current matrix by a matrix that moves (translates) an object by the

given x, y, and z values (or moves the local coordinate system by the same amounts).

 Rotate

void glRotate{fd}(TYPE angle, TYPE x, TYPE y, TYPE z);

Multiplies the current matrix by a matrix that rotates an object (or the local coordinate

system) in a counterclockwise direction about the ray from the origin through the

point (x, y, z). The angle parameter specifies the angle of rotation in degrees.

Scale

void glScale{fd}(TYPEx, TYPE y, TYPEz);

Multiplies the current matrix by a matrix that stretches, shrinks, or reflects an object

along the axes. Each x, y, and z coordinate of every point in the object is multiplied

by the corresponding argument x, y, or z. With the local coordinate system approach,

the local coordinate axes are stretched, shrunk, or reflected by the x, y, and z factors,

and the associated object is transformed with them.

2.2.3 Projection transformation

Perspective projection

void glFrustum(GLdouble left, GLdouble right, GLdouble bottom,

GLdouble top, GLdouble near, GLdouble far);

Creates a matrix for a perspective-view frustum and multiplies the current matrix by

it. The frustum's viewing volume is defined by the parameters: (left, bottom, -near)

and (right, top, -near) specify the (x, y, z) coordinates of the lower-left and upper-right

corners of the near clipping plane; near and far give the distances from the viewpoint

to the near and far clipping planes. They should always be positive.

void gluPerspective(GLdouble fovy, GLdouble aspect,

GLdouble near, GLdouble far);

Creates a matrix for a symmetric perspective-view frustum and multiplies the current

matrix by it. fovy is the angle of the field of view in the x-z plane; its value must be in

the range [0.0,180.0]. aspect is the aspect ratio of the frustum, its width divided by its

height. near and far values the distances between the viewpoint and the clipping

planes, along the negative z-axis. They should always be positive.

Orthographic projection

void glOrtho(GLdouble left, GLdouble right, GLdouble bottom,

GLdouble top, GLdouble near, GLdouble far);

 xi

Creates a matrix for an orthographic parallel viewing volume and multiplies the

current matrix by it. (left, bottom, -near) and (right, top, -near) are points on the near

clipping plane that are mapped to the lower-left and upper-right corners of the

viewport window, respectively. (left, bottom, -far) and (right, top, -far) are points on

the far clipping plane that are mapped to the same respective corners of the viewport.

Both near and far can be positive or negative.

2.2.4 Viewing volume clipping

Viewport transformation

void glViewport(GLint x, GLint y, GLsizei width, GLsizei height);

Defines a pixel rectangle in the window into which the final image is mapped. The (x,

y) parameter specifies the lower-left corner of the viewport, and width and height are

the size of the viewport rectangle. By default, the initial viewport values are (0, 0,

winWidth, winHeight), where winWidth and winHeight are the size of the window.

2.2.5 Manipulating the matrix stacks

void glPushMatrix(void);

Pushes all matrices in the current stack down one level. The current stack is

determined by glMatrixMode(). The topmost matrix is copied, so its contents are

duplicated in both the top and second-from-the-top matrix. If too many matrices are

pushed, an error is generated.

void glPopMatrix(void);

Pops the top matrix off the stack, destroying the contents of the popped matrix. What

was the second-from-the-top matrix becomes the top matrix. The current stack is

determined by glMatrixMode(). If the stack contains a single matrix, calling

glPopMatrix() generates an error.

2.3 OpenGL Lighting function

2.3.1 A Hidden-Surface Removal Survival Kit

A depth buffer works by associating a depth, or distance, from the view plane (usually

the near clipping plane), with each pixel on the window. Initially, the depth values for

all pixels are set to the largest possible distance (usually the far clipping plane) using

the glClear() command with GL_DEPTH_BUFFER_BIT. Then the objects in the

scene are drawn in any order.

To use depth buffering, you need to enable depth buffering. This has to be done only

once. Before drawing, each time you draw the scene, you need to clear the depth

buffer and then draw the objects in the scene in any order.

 xii

To performs hidden-surface removal, in the main() function

glutInitDisplayMode (GLUT_DEPTH |);

…..

glEnable(GL_DEPTH_TEST);

...

2.3.2 Real world and OpenGL Lighting

The OpenGL lighting model considers the lighting to be divided into four independent

components: emissive, ambient, diffuse, and specular.

ambient illumination is light that's been scattered so much by the environment that its

direction is impossible to determine - it seems to come from all directions.

The diffuse component is the light that comes from one direction, so it's brighter if it

comes squarely down on a surface than if it barely glances off the surface. Once it hits

a surface, however, it's scattered equally in all directions, so it appears equally bright,

no matter where the eye is located.

Specular light comes from a particular direction, and it tends to bounce off the

surface in a preferred direction. A well-collimated laser beam bouncing off a high-

quality mirror produces almost 100 percent specular reflection. Shiny metal or plastic

has a high specular component, and chalk or carpet has almost none. You can think of

specularity as shininess.

Creating light source

The command used to specify all properties of lights is glLight*().

void glLight{if}(GLenum light, GLenum pname, TYPEparam);

void glLight{if}v(GLenum light, GLenum pname, TYPE *param);

Creates the light specified by light, which can be GL_LIGHT0, GL_LIGHT1, ... , or

GL_LIGHT7. The characteristic of the light being set is defined by pname, which

specifies a named parameter param indicates the values to which the pname

characteristic is set; it's a pointer to a group of values if the vector version is used, or

the value itself if the nonvector version is used. The nonvector version can be used to

set only single-valued light characteristics.

examples: -

GLfloat light_ambient[] = { 0.0, 0.0, 0.0, 1.0 };

GLfloat light_diffuse[] = { 1.0, 1.0, 1.0, 1.0 };

GLfloat light_specular[] = { 1.0, 1.0, 1.0, 1.0 };

GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };

. . .

. . .

 xiii

glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient);

glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse);

glLightfv(GL_LIGHT0, GL_SPECULAR, light_specular);

glLightfv(GL_LIGHT0, GL_POSITION, light_position);

Enabling lighting

With OpenGL, you need to explicitly enable (or disable) lighting.

glEnable(GL_LIGHTING);

To disable lighting, call glDisable() with GL_LIGHTING as the argument.

2.4 Blending, Antialiasing and Fog

"Blending" tells you how to specify a blending function that combines color values

from a source

and a destination. The final effect is that parts of your scene appear translucent.

"Antialiasing" explains this relatively subtle technique that alters colors so that the

edges of points,

lines, and polygons appear smooth rather than angular and jagged.

"Fog" describes how to create the illusion of depth by computing the color values of

an object

based on its distance from the viewpoint. Thus, objects that are far away appear to

fade into the background, just as they do in real life.

2.5 Bitmaps and Fonts

OpenGL provides only the lowest level of support for drawing strings of characters

and manipulating fonts. The commands glRasterPos*() and glBitmap() position and

draw a single bitmap on the screen.

Current raster position

void glRasterPos{234}{sifd}(TYPE x, TYPE y, TYPE z, TYPE w);

void glRasterPos{234}{sifd}v(TYPE *coords);

Sets the current raster position. The x, y, z, and w arguments specify the coordinates

of the raster position. If the vector form of the function is used, the coords array

contains the coordinates of the raster position. If glRasterPos2*() is used, z is

implicitly set to zero and w is implicitly set to one; similarly, with glRasterPos3*(), w

is set to one.

Examples: -

glRasterPos2i(20, 20);

 xiv

Drawing the bitmap

void glBitmap(GLsizei width, GLsizei height, GLfloat xbo,

GLfloat ybo, GLfloat xbi, GLfloat ybi, const GLubyte *bitmap);

Draws the bitmap specified by bitmap, which is a pointer to the bitmap image. The

origin of the bitmap is placed at the current raster position. If the current raster

position is invalid, nothing is drawn, and the raster position remains invalid. The

width and height arguments indicate the width and height, in pixels, of the bitmap.

The width need not be a multiple of 8, although the data is stored in unsigned

characters of 8 bits each.

2.6 Texture and mapping

Texture mapping allows you to glue an image of a brick wall (obtained, perhaps, by

scanning in a photograph of a real wall) to a polygon and to draw the entire wall as a

single polygon. Texture mapping ensures that all the right things happen as the

polygon is transformed and rendered.

Steps in Texture Mapping

To use texture mapping, you perform these steps.

1. Create a texture object and specify a texture for that object.

2. Indicate how the texture is to be applied to each pixel.

3. Enable texture mapping.

4. Draw the scene, supplying both texture and geometric coordinates.

 xv

Chapter 3

BASICS OF GLUT: The OpenGL UTILITY

TOOLKIT

This section describes a subset of Mark Kilgard's OpenGL Utility Toolkit (GLUT), which

is fully documented in his book, OpenGL Programming for the X Window System

(Reading, MA: Addison-Wesley Developers Press, 1996). GLUT has become a popular

library for OpenGL programmers, because it standardizes and simplifies window and

event management. GLUT has been ported atop a variety of OpenGL implementations,

including both the X Window System and Microsoft Windows NT.

This appendix has the following major sections:

 "Initializing and Creating a Window"

 "Handling Window and Input Events"

 "Loading the Color Map"

 "Initializing and Drawing Three-Dimensional Objects"

 "Managing a Background Process"

 "Running the Program"

1. Initializing and Creating a Window

Before a programmer can open a window, he/she must specify its characteristics: Should

it be single-buffered or double-buffered? Should it store colors as RGBA values or as

color indices? Where should it appear on your display? To specify the answers to these

questions, call glutInit(), glutInitDisplayMode(), glutInitWindowSize(), and

glutInitWindowPosition() before you call glutCreateWindow() to open the window.

void glutInit(int argc, char **argv);

glutInit() should be called before any other GLUT routine, because it initializes the

GLUT library. glutInit() will also process command line options, but the specific options

are window system dependent. For the X Window System, -iconic, -geometry, and -

display are examples of command line options, processed by glutInit(). (The parameters

to the glutInit() should be the same as those to main().)

void glutInitDisplayMode(unsigned int mode);

Specifies a display mode (such as RGBA or color-index, or single- or double-buffered)

for windows created when glutCreateWindow() is called. You can also specify that the

window have an associated depth, stencil, and/or accumulation buffer. The mask

argument is a bitwise ORed combination of GLUT_RGBA or GLUT_INDEX,

GLUT_SINGLE or GLUT_DOUBLE, and any of the buffer-enabling flags:

GLUT_DEPTH, GLUT_STENCIL, or GLUT_ACCUM. For example, for a double-

buffered, RGBA-mode window with a depth and stencil buffer, use GLUT_DOUBLE |

 xvi

GLUT_RGBA | GLUT_DEPTH | GLUT_STENCIL. The default value is GLUT_RGBA

| GLUT_SINGLE (an RGBA, single-buffered window).

void glutInitWindowSize(int width, int height);

void glutInitWindowPosition(int x, int y);

Requests windows created by glutCreateWindow() to have an initial size and position.

The arguments (x, y) indicate the location of a corner of the window, relative to the entire

display. The width and height indicate the window's size (in pixels). The initial window

size and position are hints and may be overridden by other requests.

int glutCreateWindow(char *name);

Opens a window with previously set characteristics (display mode, width, height, and so

on). The string name may appear in the title bar if your window system does that sort of

thing. The window is not initially displayed until glutMainLoop() is entered, so do not

render into the window until then. The value returned is a unique integer identifier for the

window. This identifier can be used for controlling and rendering to multiple windows

(each with an OpenGL rendering context) from the same application.

2. Handling Window and Input Events

After the window is created, but before programmer enter the main loop, he/she should

register callback functions using the following routines.

void glutDisplayFunc(void (*func)(void));

Specifies the function that's called whenever the contents of the window need to be

redrawn. The contents of the window may need to be redrawn when the window is

initially opened, when the window is popped and window damage is exposed, and when

glutPostRedisplay() is explicitly called.

void glutReshapeFunc(void (*func)(int width, int height));

Specifies the function that's called whenever the window is resized or moved. The

argument func is a pointer to a function that expects two arguments, the new width and

height of the window. Typically, func calls glViewport(), so that the display is clipped to

the new size, and it redefines the projection matrix so that the aspect ratio of the projected

image matches the viewport, avoiding aspect ratio distortion. If glutReshapeFunc() isn't

called or is deregistered by passing NULL, a default reshape function is called, which

calls glViewport(0, 0, width, height).

void glutKeyboardFunc(void (*func)(unsigned int key, int x, int y);

Specifies the function, func, that's called when a key that generates an ASCII character is

pressed. The key callback parameter is the generated ASCII value. The x and y callback

parameters indicate the location of the mouse (in window-relative coordinates) when the

key was pressed.

void glutMouseFunc(void (*func)(int button, int state, int x, int y));

 xvii

Specifies the function, func, that's called when a mouse button is pressed or released. The

button callback parameter is one of GLUT_LEFT_BUTTON,

GLUT_MIDDLE_BUTTON, or GLUT_RIGHT_BUTTON. The state callback parameter

is either GLUT_UP or GLUT_DOWN, depending upon whether the mouse has been

released or pressed. The x and y callback parameters indicate the location (in window-

relative coordinates) of the mouse when the event occurred.

void glutMotionFunc(void (*func)(int x, int y));

Specifies the function, func, that's called when the mouse pointer moves within the

window while one or more mouse buttons is pressed. The x and y callback parameters

indicate the location (in window-relative coordinates) of the mouse when the event

occurred.

void glutPostRedisplay(void);

Marks the current window as needing to be redrawn. At the next opportunity, the callback

function registered by glutDisplayFunc() will be called.

3. Loading the Color Map

If programmer is using color-index mode, he/she might be surprised to discover there's

no OpenGL routine to load a color into a color lookup table. This is because the process

of loading a color map depends entirely on the window system. GLUT provides a

generalized routine to load a single color index with an RGB value, glutSetColor().

void glutSetColor(GLint index, GLfloat red, GLfloat green, GLfloat blue);

Loads the index in the color map, index, with the given red, green, and blue values. These

values are normalized to lie in the range [0.0,1.0].

4. Initializing and Drawing Three-Dimensional Objects

Many programs use three-dimensional models to illustrate various rendering properties.

The following drawing routines are included in GLUT to avoid having to reproduce the

code to draw these models in each program. The routines render all their graphics in

immediate mode. Each three-dimensional model comes in two flavors: wireframe without

surface normals, and solid with shading and surface normals. Use the solid version when

you're applying lighting. Only the teapot generates texture coordinates.

void glutWireSphere(GLdouble radius, GLint slices, GLint stacks);

void glutSolidSphere(GLdouble radius, GLint slices, GLint stacks);

void glutWireCube(GLdouble size);

void glutSolidCube(GLdouble size);

void glutWireTorus(GLdouble innerRadius, GLdouble outerRadius, GLint nsides,

GLint rings);

void glutSolidTorus(GLdouble innerRadius, GLdouble outerRadius, GLint nsides,

GLint rings);

void glutWireIcosahedron(void);

void glutSolidIcosahedron(void);

 xviii

void glutWireOctahedron(void);

void glutSolidOctahedron(void);

void glutWireTetrahedron(void);

void glutSolidTetrahedron(void);

void glutWireDodecahedron(GLdouble radius);

void glutSolidDodecahedron(GLdouble radius);

void glutWireCone(GLdouble radius, GLdouble height, GLint slices, GLint stacks);

void glutSolidCone(GLdouble radius, GLdouble height, GLint slices, GLint stacks);

void glutWireTeapot(GLdouble size);

void glutSolidTeapot(GLdouble size);

5. Managing a Background Process

You can specify a function that's to be executed if no other events are pending - for

example, when the event loop would otherwise be idle - with glutIdleFunc(). This is

particularly useful for continuous animation or other background processing.

void glutIdleFunc(void (*func)(void));

Specifies the function, func, to be executed if no other events are pending. If NULL

(zero) is passed in, execution of func is disabled.

6. Running the Program

After all the setup is completed, GLUT programs enter an event processing loop,

glutMainLoop().

void glutMainLoop(void);

Enters the GLUT processing loop, never to return. Registered callback functions will be

called when the corresponding events instigate them.

 xix

Chapter 4

SYSTEM REQUIREMENTS

4.1 Software Requirements

● Operating System: Ubuntu 10.10

● Language: C++

● Tool: Eclipse

●Library: OpenGL(glut 3.7.6)

4.2 Hardware Requirements

● Processor

 Intel Processor 100 MHz / Pentium Processor 100 MHz /AMD
Processor 100 MHz

● RAM
 256 MB or more

 xx

Chapter 5

ANALYSIS & DESIGN

5.1 Analysis

The objective of the game is to fly a helicopter in space with restricted upward and

downward motion using either mouse or keyboard, meanwhile walls will move

towards player’s copter and player have to avoid a collision between them. The game

will enter into next level as soon as player crosses next certain fixed unit distance and

speed of wall will increase by a certain fixed amount each time player enter next

level.

The basic feature of the 2D game were analysed to be: -

1. A welcome screen which contains following buttons: -

i) PROFILE: - player can make his/her own profile to save his level and score.

ii) ABOUT: - display about the game, its version and owners of game.

iii) CONFIGURATION: - player can choose the key for up and down action of copter

and can change the color of copter.

iv) START: - clicking on which game will start with the customized configuration.

2. Calculating distance travelled by copter and displaying and updating it

continuously as score of player while game is on.

3. Calculating level and continuously displaying and updating it as game is on.

4. A game over window which will show score and level of player and also a button

“PLAY AGAIN” clicking on which game will start again.

5. If player score manage among top ten scorer, after game over it should prompt for

entering his name so it can store and display player’s name among top ten scorer with

player’s name in the list.

 xxi

5.2 Design

Algorithm of display_function()

// start

{

// Checking collision condition

if ((top & bottom check) ORed (propeller front check) ORed (lower

body

 check) ORed (lower body check))

 {

 display game over window

 exit

 }

else if(welcome_window_flag is set to 1)

 {

 reset welcome_window_flag to zero

 display welcome window screen

 }

else

 {

 // increase in level by 1 and block_speed by certain amount

 if((score multiple of 50) ANDed level_flag is set to 1)

 {

 reset level_flag to zero

 increase level by 1

 increase block_speed by a fixed small amount

 }

// during playing a level set level_flag to 1

else if((score not multiple of 50) ANDed (level_flag is not zero))

 {

 Set level_flag to 1

 }

// show level and score

show level during play

increase score by 1

show score

 // controlling helicopter movement

 xxii

 //applying translation function about y-axis as there is a change occur on

every

 mouse click or key pres

 translatef(0.0, dy, 0.0);

 draw_helicopter_function();

 // controlling block movement

 // if block move till the last of left window translate back to first

 position to the right of window

 if (block x value become negative)

 {

 block_x_value=50;

 // generate y value using rand() function

 block_y_value= rand() % fix_amount ;

 }

 else

 increase block_x_value by an certain fix amount

 // drawining bloack

 glTranslatef(block_x_value, -dy, 0.0);

 glRectf(x1,y1,x2,y2);

 glPopMatrix();

 glutSwapBuffers();

 glFluash();

}

// end of external if…else statement

}

// end of display_function

 xxiii

Chapter 6

SNAPSHOT

1. Welcome Window Screen

Figure 6.1: welcome window screen

 xxiv

2. Game Running Window

Figure 6.2: game running window

3. Game over

 You scored : 50

 xxv

Chapter 7

CONCLUSION

 We have attempted to design and implement “2D helicopter”. OpenGl supports

enormous flexibility in the design and the use of OpenGl graphics programs. The

presence of many built in classes methods take care of much functionality and reduce

the job of coding as well as makes the implementation simpler.

 The project was started with the designing phase in which we figured the

requirements needed, the layout design, then comes the detail designing of each

function after which, was the testing and debugging stage.We have tried to implement

the project making it as user-friendly and error free as possible. We regret any errors

that may have inadvertently crept in.

 xxvi

BIBLIOGRAPHY

1. Computer Graphics – Principals And Practice (Foley, Van Dam, Fenier and

Hughes) helped me to understand graphics generation algorithms, user interface and

dialogue design

2. OpenGL Programming Guide (Addison-Wesley Publishing Company) helped me

to get through all OpenGL functions and Commands and understandings of all aspects

of them.

3. www.cplusplus.com: - provided references regarding all c++ functions and their

uses.

 4. www.stackoverflow.com: - help to get rid of all types of error occurred

regarding uses of OpenGL functions.

 5. www.lighthouse3d.com: - OpenGL tutorial for implementing the OpenGL

functions in Source code.

 xxvii

APPENDIX A: SOURCE CODE

#include<stdlib.h>

#include<GL/glut.h>

#include<time.h>

//#include<dos.h>

#include<stdio.h>

//#include<conio.h>

//#include<windows.h>

float bspd=0.02; // block dx value

char name[25];

float b1x=50.0,b1y=0;//block 1 init position

float hm=0.0;//copter moving dy value

int i=0,sci=1;float scf=1; // for increment score score_int

score_flag

char scs[20],slevel[20];

//to store score_string using itoa() and level as well

int level=1,lflag=1,wflag=1; //level_flag & welcome_flag init w/ 1

void init(void)

{

srand(time(0));

b1y=(rand()%45)+10;//b/w 10 to 44

glClearColor (0.0, 0.0, 0.0, 0.0);

glShadeModel (GL_SMOOTH);

glLoadIdentity ();

glOrtho(0.0, 100.0, 0.0, 100.0, -1.0 , .0);

}

void drawcopter()

{

glColor3f(0.7,1.0,1.0);

glRectf(10,49.8,19.8,44.8);//body

glRectf(2,46,10,48);//tail

glRectf(2,46,4,51);//tail up

glRectf(14,49.8,15.8,52.2);//propeller stand

glRectf(7,53.6,22.8,52.2);//propeller*/

}

void renderBitmapString(float x,float y,float z,void

*font,char*string)

{

char *c;

glRasterPos3f(x, y,z);

for(c=string; *c != '\0'; c++)

{

glutBitmapCharacter(font, *c);

}

}

 xxviii

void display(void)

{

glClear(GL_COLOR_BUFFER_BIT);

//GameOver Checking

if(

(i==730||i==-700)

//top and bottom checking

||

(((int)b1x==10||(int)b1x==7||(int)b1x==4||(int)b1x==1)

&&(int)b1y<53+(int)hm&&(int)b1y+35>53+(int)hm)

 // propeller front checking

||

(((int)b1x==9||(int)b1x==3||(int)b1x==6)

&&(int)b1y<45+(int)hm&&(int)b1y+35>45+(int)hm)

//lower body checking

||

(((int)b1x==0) && (int)b1y<46+(int)hm&&(int)b1y+35>46+(int)hm))

// lower tail checking

{

glColor3f(0.0,0.0,1.0);

glRectf(0.0,0.0,100.0,100.0);

glColor3f(1.0,0.0,0.0);

renderBitmapString(40,70,0,GLUT_BITMAP_HELVETICA_18,"GAME OVER!!!");

glColor3f(1.0,1.0,1.0);

renderBitmapString(25,58,0,GLUT_BITMAP_TIMES_ROMAN_24,"You");

renderBitmapString(45,58,0,GLUT_BITMAP_TIMES_ROMAN_24,"scored:");

renderBitmapString(70,58,0,GLUT_BITMAP_TIMES_ROMAN_24,scs);

glutSwapBuffers();

glFlush();

printf("\nGAME OVER\n\n");

printf("%s\You scored %s" ,name,scs);

printf("\n\nClose the console window to exit...\n");

//getch();

exit(0);

}

else if(wflag==1)//Welcome Screen

{

wflag=0;

glColor3f(0.0,0.5,0.7);

glRectf(0.0,0.0,100.0,10.0);//ceil

glRectf(0.0,100.0,100.0,90.0);//floor

glColor3f(1.0,1.0,1.0);

renderBitmapString(35,85,0,GLUT_BITMAP_HELVETICA_18,"CITY ENGINEERING

COLLEGE");

renderBitmapString(41,80,0,GLUT_BITMAP_HELVETICA_12,"Bangalore,

Karnataka-560 062");

glColor3f(1.0,1.0,0.0);

 xxix

renderBitmapString(20,65,0,GLUT_BITMAP_8_BY_13,"a mini project for

Computer Graphics & Visualization Laboratery");

renderBitmapString(45.5,70,0,GLUT_BITMAP_TIMES_ROMAN_24,"Helicopter")

;

glColor3f(1.0,0.0,0.0);

renderBitmapString(40,45,0,GLUT_BITMAP_TIMES_ROMAN_24,"Welcome");

renderBitmapString(53,45,0,GLUT_BITMAP_TIMES_ROMAN_24,name);

renderBitmapString(43,30,0,GLUT_BITMAP_TIMES_ROMAN_24,"Click To

Start");

renderBitmapString(17,24,0,GLUT_BITMAP_9_BY_15,"CLICK AND HOLD LEFT

MOUSE BUTTON TO GO UP RELEASE TO GO DOWN");

glColor3f(0.0,0.0,0.0);

drawcopter();

glutSwapBuffers();

glFlush();

}

else

{

//on every increase by 50 in score in each level

if(sci%50==0&&lflag==1)

{

lflag=0; //make level_flag=0

level++;//increase level by 1

bspd+=0.01;//increase block_dx_speed by 0.01

}

//within every level make level_flag=1

else if(sci%50!=0&&lflag!=1)

{

lflag=1;

}

glPushMatrix();

glColor3f(0.0,0.5,0.7);

glRectf(0.0,0.0,100.0,10.0); //ceil

glRectf(0.0,100.0,100.0,90.0); //floor

glColor3f(0.0,0.0,0.0); //score

renderBitmapString(1,3,0,GLUT_BITMAP_TIMES_ROMAN_24,"Distance:");

//glColor3f(0.7,0.7,0.7);

sprintf(slevel,"%d",level); //level

renderBitmapString(80,3,0,GLUT_BITMAP_TIMES_ROMAN_24,"Level:");

renderBitmapString(93,3,0,GLUT_BITMAP_TIMES_ROMAN_24,slevel);

scf+=0.025; //so less as program run very fast

sci=(int)scf;

sprintf(scs,"%d",sci);

//from int to char convertion to display score

renderBitmapString(20,3,0,GLUT_BITMAP_TIMES_ROMAN_24,scs);

glTranslatef(0.0,hm,0.0);

// hm(=dy) changes occur by mouse func

 xxx

drawcopter();

//code for helicopter

//if wall move towards left & get out of projection volume

if(b1x<-10)

{

b1x=50; //total width is 50

b1y=(rand()%25)+20;

//10 for selling+10 for giving enough space

// block bottom limit 0+20 & top limit 24+20=44

}

else

b1x-=bspd;

//within the projection volume dec its x value by block_speed

glTranslatef(b1x,-hm,0.0);

glColor3f(1.0,0.0,0.0);

glRectf(b1x,b1y,b1x+5,b1y+35);//block 1

glPopMatrix();

glutSwapBuffers();

glFlush();

}

}

void moveHeliU(void)

{

hm+=0.05;

i++;

glutPostRedisplay();

}

void moveHeliD()

{

hm-=0.05;

i--;

glutPostRedisplay();

}

void mouse(int button, int state, int x, int y)

{

switch (button)

{

case GLUT_LEFT_BUTTON:

if (state == GLUT_DOWN)

 xxxi

glutIdleFunc(moveHeliU);

else if (state == GLUT_UP)

glutIdleFunc(moveHeliD);

break;

default: break;

}

}

void keys(unsigned char key,int x,int y)

{

if(key=='w') glutIdleFunc(moveHeliU);

if(key=='m') glutIdleFunc(moveHeliD);

}

int main(int argc, char** argv)

{

printf("enter your name to play: ");

scanf("%s",name);

glutInit(&argc, argv);

glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);

glutInitWindowSize (800, 600);

glutInitWindowPosition (200,200);

glutCreateWindow ("2D Copter Game");

init();

glutDisplayFunc(display);

 glutMouseFunc(mouse);

 glutKeyboardFunc(keys);

 glutMainLoop();

 return 0;

 }

helicopter

