
Pac-Man

Dept of CSE, CEC 2010-11 1

CHAPTER 1

INTRODUCTION

1.1 Computer Graphics

Graphics provides one of the most natural means of communicating with a computer,

since our highly developed 2D and 3D pattern recognition abilities allow us to perceive and

process pictorial data rapidly and efficiently. Interactive computer graphics is the most

important means of producing pictures since the invention of photography and television. It

has the added advantage that, with the computer, we can make pictures not only of concrete

real world objects but also of abstract, synthetic objects, such as mathematical surfaces and

of data that have no inherent geometry, such as survey results.

1.2 OpenGL

OpenGL (Open Graphics Library) is a standard specification defining a cross

language cross platform API for writing applications that produce 2D and 3D computer

graphics. The interface consists of over 250 different function calls which can be used to

draw complex 3D scenes from simple primitives. OpenGL was developed by Silicon

Graphics Inc. (SGI) in 1992 and is widely used in CAD, virtual reality, scientific

visualization, information visualization and flight simulation. It is also used in video games,

where it competes with direct 3D on Microsoft Windows Platforms.OpenGL is managed by

the non profit technology consortium, the Khronos group Inc.

OpenGL serves two main purposes :

 To hide the complexities of interfacing with different 3D accelerators,

by presenting programmer with a single, uniform API

 To hide the differing capabilities of hardware platforms , by requiring

that all implementations support the full OpenGL feature set.

Pac-Man

Dept of CSE, CEC 2010-11 2

OpenGL has historically been influential on the development of 3D accelerator, promoting a

base level of functionality that is now common in consumer level hardware:

 Rasterized points, lines and polygons are basic primitives.

 A transform and lighting pipeline .

 Z buffering .

 Texture Mapping.

 Alpha Blending.

OpenGL Graphics Architecture :

 Fig 1.1 openGl Graphics Architecture

Display Lists :

All data, whether it describes geometry or pixels, can be saved in a display list for current

or later use. When a display list is executed, the retained data is sent from the display list just

as if it were sent by the application in immediate mode.

 Evaluators :

All geometric primitives are eventually described by vertices. Parametric curves and

surfaces may be initially described by control points and polynomial functions called basis

functions.

Pac-Man

Dept of CSE, CEC 2010-11 3

 Per Vertex Operations :

For vertex data, next is the "per-vertex operations" stage, which converts the vertices into

primitives. Some vertex data are transformed by 4 x 4 floating-point matrices. Spatial

coordinates are projected from a position in the 3D world to a position on your screen.

 Primitive Assembly :

Clipping, a major part of primitive assembly, is the elimination of portions of geometry

which fall outside a half space, defined by a plane.

 Pixel Operation:

While geometric data takes one path through the OpenGL rendering pipeline, pixel data

takes a different route. Pixels from an array in system memory are first unpacked from one of

a variety of formats into the proper number of components. Next the data is scaled, biased,

and processed by a pixel map. The results are clamped and then either written into texture

memory or sent to the rasterization step.

 Rasterization:

Rasterization is the conversion of both geometric and pixel data into fragments. Each

fragment square corresponds to a pixel in the framebuffer. Color and depth values are

assigned for each fragment square.

 Fragment Operations :

Before values are actually stored into the framebuffer, a series of operations are

performed that may alter or even throw out fragments. All these operations can be enabled or

disabled.

1.3 Project Goal

The aim of this project is to develop a 3D Game which supports basic operations

Pac-Man

Dept of CSE, CEC 2010-11 4

which include Movement, Artificial Intelligence, collision Detection and also transformation

operations like translation, rotation, scaling etc on objects. The package must also have a

user friendly interface .

1.4 Scope

It is developed in ECLIPSE. It has been implemented on UBUNTU platform. The

3-D graphics package designed here provides an interface for the users for handling the

display and manipulation of Pac-Man Movements. The Keyboard is the main input device

used.

Pac-Man :

 The game was developed primarily by a young Namco employee Tōru Iwatani, over

a year, beginning in April of 1979, employing a nine-man team. The original title was

pronounced pakku-man and was inspired by the Japanese onomatopoeic phrase paku-paku

taberu where paku-paku describes (the sound of) the mouth movement when widely opened

and then closed in succession.

 Although it is often cited that the character's shape was inspired by a pizza missing a

slice, he admitted in a 1986 interview that it was a half-truth and the character design also

came from simplifying and rounding out the Japanese character for mouth, kuchi as well as

the basic concept of eating. Iwatani's efforts to appeal to a wider audience beyond the typical

demographics of young boys and teenagers-eventually led him to add elements of a maze.

The result was a game he named Puck Man.

http://en.wikipedia.org/wiki/T%C5%8Dru_Iwatani
http://en.wikipedia.org/wiki/Onomatopoeia
http://en.wikipedia.org/wiki/Pizza
http://en.wikipedia.org/wiki/Adolescence

Pac-Man

Dept of CSE, CEC 2010-11 5

CHAPTER 2

LITERATURE SURVEY

The Pac-Man game has its roots as a Japanese arcade game developed by Namco

(now Namco Bandai) and licensed for distribution in the U.S. by Midway, first released in

Japan on May 22, 1980. Pac-Man is universally considered as one of the classics of the

medium, virtually synonymous with video games, and an icon of 1980s popular culture.

When it was released, the game became a social phenomenon.

The Pac-Man game is often credited with being a landmark in video game history,

and is among the most famous arcade games of all time. The character also appears in more

than 30 officially licensed games asequels, as well as in numerous unauthorized clones and

bootlegs.

Basic Working Of Pac-Man :

 The player controls Pac-Man through a maze, eating dots. When all dots are eaten,

Pac-Man game is over. Four ghosts roam the maze, trying to catch Pac-Man. If a ghost

touches Pac-Man, a life is lost. When all lives have been lost, the game ends. Near the

corners of the maze are four larger, flashing dots known as "Energizers" or "Power Pills",

which provide Pac-Man with the temporary ability to eat the ghosts.

The ghosts turn deep blue, reverse direction, and usually move more slowly till it

returns to the normal state. When Pac-Man eats ghost during vulnerable state, ghost traverses

back to the jail and re-initializes to start a new attack. Collision Detection for Pac-Man and

Ghost, and Artificial Intelligence for Ghost has been implemented. A total of 260 points are

assigned (1 point for normal pebble and 5 points for super pebble) and max lives of 3 is being

setup with a 3-D Maze.

 Related Data Structure :

Package uses data structures like Stack for storing the co-ordinates of primitives and also

uses Arrays for storing the pixel values.

Pac-Man

Dept of CSE, CEC 2010-11 6

CHAPTER 3

HARDWARE AND SOFTWARE REQUIREMENTS

3.1 Hardware Requirements

 Pentium or higher processor.

 512 MB or more RAM.

 3.2 Software Requirements

 This graphics package has been designed for UBUNTU Platform and uses ECLIPSE

integrated environment.

 Development Platform

 UBUNTU 10.10

 Development tool

 ECLIPSE

 Language Used In Coding

 C++

Pac-Man

Dept of CSE, CEC 2010-11 7

CHAPTER 4

DESIGN

4.1 Proposed System

 To achieve three dimensional effects, OpenGL software is proposed. It is software

which provides a graphical interface. It is an interface between application program and

graphics hardware. The advantages are:

 OpenGL is designed as a streamlined.

 It is a hardware independent interface, it can be implemented on many

different hardware platforms.

 With OpenGL, we can draw a small set of geometric primitives such as

points, lines and polygons etc.

 It provides double buffering which is vital in providing transformations.

 It is event driven software.

 It provides call back function.

Detailed Design

 Transformation Functions

 Translation:

Translation is done by adding the required amount of translation quantities to each of

the points of the objects in the selected area. If P(x,y) be the a point and (tx, ty) translation

quantities then the translated point is given by

 glTranslatef(dx,dy,dz) ;

 Rotation:

 The rotation of an object by an angle 'a' is accomplished by rotating each of the points

of the object. The rotated points can be obtained using the OpenGL functions

glRotatef(angle, vx,vy,vz);

 Scaling:

The scaling operation on an object can be carried out for an object by multiplying

each of the points (x,y,z) by the scaling factors sx, sy and sz.

 glScalef(sx,sy,sz);

Pac-Man

Dept of CSE, CEC 2010-11 8

CHAPTER 5

IMPLEMENTATION

5.1 User Defined Functions:

Function for pacman:

Pacman_Move ()

{

Both the x and y updated coordinates are calculate

using the speed of the pacman and trigonometric functions.

}

Pacman_Draw()

{

Here , the pacman is drawn using the glutSolidSphere () function

And the eyes of the pacman is rendered using a combination of

Random coloring and glutSolidSphere () function.

}

Collision Detection For Pac-Man And Ghost:

Bool open()

{

Here, the condition to check if the board is open is given.

This is used for collision detection.

}

Function for Monsters:

Pac-Man

Dept of CSE, CEC 2010-11 9

Monster_init()

{

Here , all the variable values are initialized at the beginning of the

Game.

}

Monster_Move ()

{

Both the x and y updated coordinates are calculate

using the speed of the Monster and trigonometric functions.

}

Monster_Updation()

{

Here, the state of the monster is updated.

The edibility condition is checked and the flag is set.

If the monster is eaten, then the jail timer starts &

The monster is sent to jail.

}

Monster_Vulnerable()

{

Checks the edible condition for the monsters.

}

Monster_Chase()

{

Here , depending on the edible condition for the

Monsters , they are set to chase pacman or escape from it.

This is done by using the x-y coordinates of the pacman.

The random movement of the monsters is also handled

}

Pac-Man

Dept of CSE, CEC 2010-11 10

Monster_draw()

{

Here, the pacman is drawn using the glutSolidSphere () function.

The color of the monsters is changed depending on the edible

Condition.

}

Function for Board:

Board_draw()

{

Here , the board is rendered.

Its done in 2 steps to avoid complication in depth.

Depending on the x-y coordinates , the board is rendered

Using different walls.

The pebbles are also rendered here .

Using the random f() , the color of the pebbles is changed

To give it a flicker effect.

}

Render_scene()

{

This is the default display function.

Here , the collision detection for pacman , the conditions for

Normal & super pills consumption, with monster movements

Are covered.

Options are provided for game control.

}

Create_list()

{

Pac-Man

Dept of CSE, CEC 2010-11 11

This function is used to create the basic primitive walls using

Display lists. Based on the position, the appropriate list are called.

}

In Built Functions Used

 PushMatrix And PopMatrix

Syntax: glPushMatrix();

 glPopMatrix();

Description:

 Pushes the current transformation matrix onto the matrix stack. The glPushMatrix()

function saves the current coordinate system to the stack and glPopMatrix() restores the prior

coordinate system.

 Solid Sphere

 Syntax:

 void glutSolidSphere (GLdouble radius , GLint slices, GLint stacks);

Parameters:

 Radius: The radius of the sphere.

 Slices: The number of subdivisions around the Z axis (similar to

 Lines of longitude).

 Stacks: The number of subdivisions along the Z axis (similar to

 Lines of latitude).

 Description:

 Renders a sphere centered at the modeling coordinates origin of the

specified radius. The sphere is subdivided aroundthe Z axis into slices and along the Z axis

into stacks.

Pac-Man

Dept of CSE, CEC 2010-11 12

get Async KeyState Function :

Syntax:

 SHORT GetAsyncKeyState(int vKey);

Parameters:

 vKey [in] int;

 Specifies one of 256 possible key codes. You can use left- and right-distinguishing

constants to specify certain keys.

Description:

 The GetAsyncKeyState function determines whether a key is up or down at the time the

function is called, and whether the key was pressed after a previous call to

GetAsyncKeyState.

Return Value:

 SHORT

 Post Redisplay :

Syntax:

 void glutPostRedisplay();

Description:

glutPostRedisplay marks the normal plane of current window as needing to be

redisplayed. glutPostRedisplay may be called within a window's display or overlay

display callback to re-mark that window for redisplay.

 Timer Function :

Syntax:

Pac-Man

Dept of CSE, CEC 2010-11 13

void glutTimerFunc(unsigned int msecs, void(*func), int value);

Parameters:

msecs : Number of milliseconds to pass before calling the callback.

func : The timer callback function.

value : Integer value to pass to the timer callback.

Description:

 glutTimerFunc registers the timer callback func to be triggered in at least msecs

milliseconds. The value parameter to the timer callback will be the value of the value

parameter to glutTimerFunc.

 Bitmap Character :

Syntax:

 void glutBitmapCharacter(void *font , int character);

 Parameters:

 Font : Bitmap font to use.

 Character : Character to render (not confined to 8 bits).

Description:

Without using any display lists, glutBitmapCharacter renders the character in the

named bitmapfont. The available fonts are:

 GLUT_BITMAP_TIMES_ROMAN_24 : A 24-point proportional spaced Times Roman

font.

Pac-Man

Dept of CSE, CEC 2010-11 14

GLUT_BITMAP_HELVETICA_18 : A 18-point proportional spaced Helvetica font.

 Raster Position

Syntax:

 void glRasterPos3f(GLfloat x, GLfloat y, GLfloat z);

Parameters:

x: Specifies the x-coordinate for the current raster position.

y: Specifies the y-coordinate for the current raster position.

z: Specifies the z-coordinate for the current raster position.

Description:

OpenGL maintains a 3-D position in window coordinates. This position, called the

raster position, is maintained with subpixel accuracy. It is used to position pixel and bitmap

write operations.

 Color Function

Syntax :

void glColor3ub(GLubyte red, GLubyte green, GLubyte blue);

Parameters :

red : The new red value for the current color.

green : The new green value for the current color.

blue: The new blue value for the current color.

Description:

 This function randomly generates different color based on the

 rand() function.

Pac-Man

Dept of CSE, CEC 2010-11 15

 Keyboard Function

Syntax:

 void glutKeyboardFunc(void (*func)(unsigned char key, int x, int y));

func: The new keyboard callback function.

Description:

 glutKeyboardFunc sets the keyboard callback for the current window. When a user

types into the window, each key press generating an ASCII character will generate a

keyboard callback.

 ShadeModel

Syntax:

void glShadeModel(GLenum mode);

Parameters:

Mode: Specifies a symbolic value representing a shading technique. Accepted

values are GL_FLAT and GL_SMOOTH. The initial value is GL_SMOOTH.

Description:

 GL primitives can have either flat or smooth shading. Smooth shading, the default,

causes the computed colors of vertices to be interpolated as the primitive is rasterized

typically assigning different colors to each resulting pixel fragment. Flat shading selects the

computed color of just one vertex and assigns it to all the pixel fragments generated by

rasterizing a single primitive

Pac-Man

Dept of CSE, CEC 2010-11 16

5.2 ALGORITHM

Step1: Initialize the graphics window and its size using GLUT functions.

Step 2: Register the keyboard and display call backs in main function.

Step3: When arrow keys are pressed ghosts are released from jail

Step 4: If left arrow is pressed the Pac-man move towards left in the maze eating the

pebbles simultaneously points are incremented, when points becomes 260 the game is

restored.

Step 5: If right, up, down arrows is pressed Pac-man moves in respective direction eating

pebbles.

Step 6: If Pac-man eats super pebbles ghosts become edible and vulnerable function is

called

Step 7: If Pac-man collides the ghosts in vulnerable state ghosts go to jail. If the ghosts

are uneaten in vulnerable state update function is called.

Step 8: If Pac-man collides with ghosts provided ghosts are not in vulnerable state Pac-

man becomes edible and lives are decremented by one. If lives becomes zero the game is

over.

Pac-Man

Dept of CSE, CEC 2010-11 17

5.3 DATA FLOW DIAGRAM

Pac-Man

Dept of CSE, CEC 2010-11 18

CHAPTER 6

SNAPSHOTS

Fig 6.1 Initial View Of Pac-Man

 Fig 6.2 Ghosts Chasing The Pac-Man

Pac-Man

Dept of CSE, CEC 2010-11 19

 Fig 6.3 Ghosts In The Vulnerable State

Fig 6.4 Game Over

Pac-Man

Dept of CSE, CEC 2010-11 20

CHAPTER 7

CONCLUSION AND FUTURE ENHANCEMENTS

 We have tried our level best to build the project efficiently and correctly and have

succeeded in building a better project, but may not be a best project. We have implemented

the required functions which we had stated earlier. After all testing process, the game is now

ready to be played.

In future the following enhancements could be done:

 Providing Camera Movement.

 Providing More Number of Levels.

 Providing High Quality Graphics.

 Implementing Shortest Path Algorithm for Ghosts.

Pac-Man

Dept of CSE, CEC 2010-11 21

APPENDIX A

#include<ctype.h>

#include<GL/glut.h>

#include<math.h>

#include<stdio.h>

#define M_PI 3.14159265358979323846264338327950288419716939937510

#define false 0

#define true 1

const int BOARD_X = 31;

const int BOARD_Y = 28;

int board_array[BOARD_X][BOARD_Y] =

 {{8,5,5,5,5,5,5,5,5,5,5,5,5,1,1,5,5,5,5,5,5,5,5,5,5,5,5,7},

 {6,0,0,0,0,0,0,0,0,0,0,0,0,2,4,0,0,0,0,0,0,0,0,0,0,0,0,6},

 {6,0,8,1,1,7,0,8,1,1,1,7,0,2,4,0,8,1,1,1,7,0,8,1,1,7,0,6},

 {6,0,2,11,11,4,0,2,11,11,11,4,0,2,4,0,2,11,11,11,4,0,2,11,11,4,0,6},

 {6,0,9,3,3,10, 0,9,3,3,3,10,0,9,10,0,9,3,3,3,10,0,9,3,3,10,0,6},

 {6,0,6},

 {6,0,8,1,1,7,0,8,7,0,8,1,1,1,1,1,1,7,0,8,7,0,8,1,1,7,0,6},

 {6,0,9,3,3,10,0,2,4,0,9,3,3,11,11,3,3,10,0,2,4,0,9,3,3,10,0,6},

 {6,0,0,0,0,0,0,2,4,0,0,0,0,2,4,0,0,0,0,2,4,0,0,0,0,0,0,6},

 {9,5,5,5,5,7,0,2,11,1,1,7,0,2,4,0,8,1,1,11,4,0,8,5,5,5,5,10},

 {0,0,0,0,0,6,0,2,11,3,3,10,0,9,10,0,9,3,3,11,4,0,6,0,0,0,0,0},

 {0,0,0,0,0,6,0,2,4,0,0,0,0,0,0,0,0,0,0,2,4,0,6,0,0,0,0,0},

 {0,0,0,0,0,6,0,2,4,0,8,5,5,1,1,5,5,7,0,2,4,0,6,0,0,0,0,0},

 {5,5,5,5,5,10,0,9,10,0,6,0,0,0,0,0,0,6,0,9,10,0,9,5,5,5,5,5},

 {0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0},

 {5,5,5,5,5,7,0,8,7,0,6,0,0,0,0,0,0,6,0,8,7,0,8,5,5,5,5,5},

 {0,0,0,0,0,6,0,2,4,0,9,5,5,5,5,5,5,10,0,2,4,0,6,0,0,0,0,0},

 {0,0,0,0,0,6,0,2,4,0,0,0,0,0,0,0,0,0,0,2,4,0,6,0,0,0,0,0},

 {0,0,0,0,0,6,0,2,4,0,8,1,1,1,1,1,1,7,0,2,4,0,6,0,0,0,0,0},

 {8,5,5,5,5,10,0,9,10,0,9,3,3,11,11,3,3,10,0,9,10,0,9,5,5,5,5,7},

 {6,0,0,0,0,0,0,0,0,0,0,0,0,2,4,0,0,0,0,0,0,0,0,0,0,0,0,6},

 {6,0,8,1,1,7,0,8,1,1,1,7,0,2,4,0,8,1,1,1,7,0,8,1,1,7,0,6},

 {6,0,9,3,11,4,0,9,3,3,3,10,0,9,10,0,9,3,3,3,10,0,2,11,3,10,0,6},

 {6,0,0,0,2,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,4,0,0,0,6},

 {2,1,7,0,2,4,0,8,7,0,8,1,1,1,1,1,1,7,0,8,7,0,2,4,0,8,1,4},

 {2,3,10,0,9,10,0,2,4,0,9,3,3,11,11,3,3,10,0,2,4,0,9,10,0,9,3,4},

 {6,0,0,0,0,0,0,2,4,0,0,0,0,2,4,0,0,0,0,2,4,0,0,0,0,0,0,6},

 {6,0,8,1,1,1,1,11,11,1,1,7,0,2,4,0,8,1,1,11,11,1,1,1,1,7,0,6},

 {6,0,9,3,3,3,3,3,3,3,3,10,0,9,10,0,9,3,3,3,3,3,3,3,3,10,0,6},

 {6,0,6},

 {9,5,10}};

int pebble_array[BOARD_X][BOARD_Y] =

 {{0,0},

 {0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,0},

 {0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0},

 {0,3,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,3,0},

 {0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0},

 {0,1,0},

 {0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0},

Pac-Man

Dept of CSE, CEC 2010-11 22

 {0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0},

 {0,1,1,1,1,1,1,0,0,1,1,1,1,0,0,1,1,1,1,0,0,1,1,1,1,1,1,0},

 {0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0},

 {0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0},

 {0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0},

 {0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0},

 {0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0},

 {0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0},

 {0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0},

 {0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0},

 {0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0},

 {0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0},

 {0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0},

 {0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,0},

 {0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0},

 {0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0},

 {0,3,1,1,0,0,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,0,0,1,1,3,0},

 {0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0},

 {0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0},

 {0,1,1,1,1,1,1,0,0,1,1,1,1,0,0,1,1,1,1,0,0,1,1,1,1,1,1,0},

 {0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0},

 {0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0},

 {0,1,0},

 {0,0}};

GLubyte list[5];

int tp_array[31][28];

int pebbles_left;

double speed1 = 0.1;

double angle1 = 90;

double a=13.5, b=23;

bool animate = false;

int lives=3;

int points=0;

void keys();

unsigned char ckey='w';

void mykey(unsigned char key,int x,int y);

bool Open(int a,int b);

void Move()

{

 a += speed1*cos(M_PI/180*angle1);

 b += speed1*sin(M_PI/180*angle1);

 if(animate&&ckey==GLUT_KEY_UP&& (int) a - a > -0.1 && angle1 != 270) //w

 {

 if (Open(a,b-1))

 {

 animate = true;

Pac-Man

Dept of CSE, CEC 2010-11 23

 angle1 = 270;

 }

 }

 else if(animate&&ckey==GLUT_KEY_DOWN&& (int) a - a > -0.1 && angle1 != 90)// s

 {

 if (Open(a,b+1))

 {

 animate = true;

 angle1= 90;

 }

 }

 else if(animate&&ckey==GLUT_KEY_LEFT&& (int) b - b > -0.1 && angle1 != 180)//a

 {

 if (Open(a-1,b))

 {

 animate = true;

 angle1 = 180;

 }

 }

 else if(animate&&ckey==GLUT_KEY_RIGHT&& (int) b - b > -0.1 && angle1 != 0)//d

 {

 if (Open(a+1,b))

 {

 animate = true;

 angle1 = 0;

 }

 }

}

void Pac(void)

{

 //Draw Pacman

 glColor3f(0,1,1);

 glPushMatrix();

 glTranslatef(a,-b,0);

 glTranslatef(0.5,0.6,0);

 glTranslatef((float)BOARD_X/-2.0f,(float)BOARD_Y/2.0f,0.5);

 glutSolidSphere(0.5,15,10);

 glPopMatrix();

}

//Monster Drawing And Moving Begins

bool open_move[4];

bool gameover = false;

int num_ghosts = 4;

int start_timer=3;

Pac-Man

Dept of CSE, CEC 2010-11 24

class Ghost

{

 private:

 public:

 bool edible;

 int edible_max_time;

 int edible_timer;

 bool eaten;

 bool transporting;

 float color[3];

 double speed;

 double max_speed;

 bool in_jail;

 int jail_timer;

 double angle;

 double x, y;

 Ghost(double, double);

 ~Ghost(void);

 void Move(); //Move the Monster

 void Update(void); //Update Monster State

 void Chase(double, double, bool*); //Chase Pacman

 bool Catch(double, double); //collision detection

 void Reinit(void);

 void Vulnerable(void);

 void Draw(void); //Draw the Monster

 void game_over(void);

};

Ghost *ghost[4];

Ghost::~Ghost(void){}

Ghost::Ghost(double tx, double ty)

{

 tx = x;

 ty = y;

 angle = 90;

 speed = max_speed=1;

 color[0] = 1;

 color[1] = 0;

 color[2] = 0;

 eaten = false;

 edible_max_time =300;

 edible = false;

 in_jail = true;

Pac-Man

Dept of CSE, CEC 2010-11 25

 jail_timer = 30;

}

void Ghost::Reinit(void)

{

 edible = false;

 in_jail = true;

 angle = 90;

}

//Move Monster

void Ghost::Move()

{

 x += speed*cos(M_PI/180*angle);

 y += speed*sin(M_PI/180*angle);

}

void Ghost::game_over()

{

}

void Ghost::Update(void)

{

 if ((int)x == 0 && (int) y == 14 && (!(transporting)))

 {

 angle=180;

 }

 if (x < 0.1 && (int) y == 14)

 {

 x = 26.9;

 transporting = true;

 }

 if ((int)x == 27 && (int) y == 14 && (!(transporting)))

 {

 angle=0;

 }

 if (x > 26.9 && (int) y == 14)

 {

 x = 0.1;

 transporting = true;

 }

 if ((int)x == 2 || (int)x == 25)

 transporting = false;

 if (((int) x < 5 || (int) x > 21) && (int) y == 14 && !edible && !eaten)

 speed = max_speed/2;

 speed = max_speed;

 //edibility

 if (edible_timer == 0 && edible && !eaten)

 {

Pac-Man

Dept of CSE, CEC 2010-11 26

 edible = false;

 speed = max_speed;

 }

 if (edible)

 edible_timer--;

 //JAIL

 if (in_jail && (int) (y+0.9) == 11)

 {

 in_jail = false;

 angle = 180;

 }

 if (in_jail && ((int)x == 13 || (int)x == 14))

 {

 angle = 270;

 }

 //if time in jail is up, position for exit

 if (jail_timer == 0 && in_jail)

 {

 //move right to exit

 if (x < 13)

 angle = 0;

 if (x > 14)

 angle = 180;

 }

 //decrement time in jail counter

 if (jail_timer > 0)

 jail_timer--;

 //EATEN GHOST SEND TO JAIL

 if (eaten && ((int) x == 13 || (int) (x+0.9) == 14) && ((int)y > 10 && (int) y < 15))

 {

 in_jail = true;

 angle = 90;

 if((int) y == 14)

 {

 eaten = false;

 speed = max_speed;

 jail_timer = 66;

 x = 11;

 }

 }

}

bool Ghost::Catch(double px, double py)

{

 // Collision Detection

 if (px - x < 0.2 && px - x > -0.2 && py - y < 0.2 && py - y > -0.2)

 {

 return true;

 }

 return false;

Pac-Man

Dept of CSE, CEC 2010-11 27

}

//called when pacman eats a super pebble

void Ghost::Vulnerable(void)

{

 if (!(edible))

 {

 angle = ((int)angle + 180)%360;

 speed = max_speed;

 }

 edible = true;

 edible_timer = edible_max_time;

 //speed1=0.15;

}

void Ghost::Chase(double px, double py, bool *open_move)

{

 int c;

 if (edible)

 c = -1;

 else

 c = 1;

 bool moved = false;

 if ((int) angle == 0 || (int) angle == 180)

 {

 if ((int)c*py > (int)c*y && open_move[1])

 angle = 90;

 else if ((int)c*py < (int)c*y && open_move[3])

 angle = 270;

 }

 else if ((int) angle == 90 || (int) angle == 270)

 {

 if ((int)c*px > (int)c*x && open_move[0])

 angle = 0;

 else if ((int)c*px < (int)c*x && open_move[2])

 angle = 180;

 }

 //Random Moves Of Monsters

 if ((int) angle == 0 && !open_move[0])

 angle = 90;

 if ((int) angle == 90 && !open_move[1])

 angle = 180;

 if ((int) angle == 180 && !open_move[2])

 angle = 270;

Pac-Man

Dept of CSE, CEC 2010-11 28

 if ((int) angle == 270 && !open_move[3])

 angle = 0;

 if ((int) angle == 0 && !open_move[0])

 angle = 90;

}

void Ghost::Draw(void)

{

 if (!edible)

 glColor3f(color[0],color[1],color[2]);

 else

 {

 if (edible_timer < 150)

 glColor3f((edible_timer/10)%2,(edible_timer/10)%2,1);

 if (edible_timer >= 150)

 glColor3f(0,0,1);

 }

 if (eaten)

 glColor3f(1,1,0); //When Eaten By PacMan Change Color To Yellow

 glPushMatrix();

 glTranslatef(x,-y,0);

 glTranslatef(0.5,0.6,0);

 glTranslatef((float)BOARD_X/-2.0f, (float)BOARD_Y/2.0f,0.5);

 glutSolidSphere(.5,10,10);

 glPopMatrix();

}

void tp_restore(void)

{

 for (int ISO = 0; ISO < BOARD_X; ISO++)

 {

 for (int j = 0; j < BOARD_Y; j++)

 {

 tp_array[ISO][j] = pebble_array[ISO][j];

 }

 }

 pebbles_left = 244;

}

void Draw(void)

{

 glColor3f(1,0,1);

 //split board drawing in half to avoid issues with depth

 for (int ISO = 0; ISO < BOARD_X; ISO++)

Pac-Man

Dept of CSE, CEC 2010-11 29

 {

 for (int j = 0; j < BOARD_Y/2; j++)

 {

 glColor3f(0,0,1);

 int call_this = 0;

 glPushMatrix();

 glTranslatef(-(float) BOARD_X / 2.0f,-(float) BOARD_Y / 2.0f, 0);

 glTranslatef(j, BOARD_Y - ISO,0);

 glPushMatrix();

 glTranslatef(0.5,0.5,0);

 switch (board_array[ISO][j])

 {

 case 4:

 glRotatef(90.0,0,0,1);

 case 3:

 glRotatef(90.0,0,0,1);

 case 2:

 glRotatef(90.0,0,0,1);

 case 1:

 call_this = 1;

 break;

 case 6:

 glRotatef(90.0,0,0,1);

 case 5:

 call_this = 2;

 break;

 case 10:

 glRotatef(90.0,0,0,1);

 case 9:

 glRotatef(90.0,0,0,1);

 case 8:

 glRotatef(90.0,0,0,1);

 case 7:

 call_this = 3;

 break;

 }

 glScalef(1,1,0.5);

 glTranslatef(-0.5,-0.5,0);

 glCallList(list[call_this]);

 glPopMatrix();

 //now put on the top of the cell

 if (call_this != 0 || board_array[ISO][j] == 11)

 {

 glTranslatef(0,0,-0.5);

 glCallList(list[4]);

 }

 glPopMatrix();

 if (tp_array[ISO][j] > 0)

 {

Pac-Man

Dept of CSE, CEC 2010-11 30

 glColor3f(0,300,1/(float)tp_array[ISO][j]);

 glPushMatrix();

 glTranslatef(-(float) BOARD_X / 2.0f,-(float) BOARD_Y / 2.0f, 0);

 glTranslatef(j, BOARD_Y - ISO,0);

 glTranslatef(0.5,0.5,0.5);

 glutSolidSphere(0.1f*((float)tp_array[ISO][j]),6,6);

 glPopMatrix();

 }

 }

 }

 int ISO;

 for (ISO= 0; ISO< BOARD_X; ISO++)

 {

 for (int j = BOARD_Y-1; j >= BOARD_Y/2; j--)

 {

 glColor3f(0,0,1);

 int call_this = 0;

 glPushMatrix();

 glTranslatef(-(float) BOARD_X / 2.0f,-(float) BOARD_Y / 2.0f, 0);

 glTranslatef(j, BOARD_Y - ISO,0);

 glPushMatrix();

 glTranslatef(0.5,0.5,0);

 switch (board_array[ISO][j])

 {

 case 4:

 glRotatef(90.0,0,0,1);

 case 3:

 glRotatef(90.0,0,0,1);

 case 2:

 glRotatef(90.0,0,0,1);

 case 1:

 call_this = 1;

 break;

 case 6:

 glRotatef(90.0,0,0,1);

 case 5:

 call_this = 2;

 break;

 case 10:

 glRotatef(90.0,0,0,1);

 case 9:

 glRotatef(90.0,0,0,1);

 case 8:

 glRotatef(90.0,0,0,1);

 case 7:

 call_this = 3;

 break;

 }

 glScalef(1,1,0.5);

 glTranslatef(-0.5,-0.5,0);

 glCallList(list[call_this]);

Pac-Man

Dept of CSE, CEC 2010-11 31

 glPopMatrix();

 //now put on top

 if (call_this != 0 || board_array[ISO][j] == 11)

 {

 glTranslatef(0,0,-0.5);

 glCallList(list[4]);

 }

 glPopMatrix();

 if (tp_array[ISO][j] > 0)

 {

 glColor3f(0,300,1/(float)tp_array[ISO][j]);

 glPushMatrix();

 glTranslatef(-(float) BOARD_X / 2.0f,-(float) BOARD_Y / 2.0f, 0);

 glTranslatef(j, BOARD_Y - ISO,0);

 glTranslatef(0.5,0.5,0.5);

 glutSolidSphere(0.1f*((float)tp_array[ISO][j]),6,6);

 glPopMatrix();

 }

 }

 }

 Pac();

}

bool Open(int a, int b)

{

 if (board_array[b][a] > 0)

 {

 return false;

 }

 return true;

}

void RenderScene();

void mykey(unsigned char key,int x,int y)

{

 if (start_timer > 0)

 {

 start_timer--;

 }

}

void specialDown(int key,int x,int y)

{

 if (start_timer > 0)

 start_timer--;

 ckey=key;

 if(key==GLUT_KEY_UP&& (int) a - a > -0.1 && angle1 != 270) //w

 {

 if (Open(a, b - 1))

 {

Pac-Man

Dept of CSE, CEC 2010-11 32

 animate = true;

 angle1 = 270;

 }

 }

 else if(key==GLUT_KEY_DOWN&& (int) a - a > -0.1 && angle1 != 90)// s

 {

 if (Open(a,b + 1))

 {

 animate = true;

 angle1= 90;

 }

 }

 else if(key==GLUT_KEY_LEFT&& (int) b - b > -0.1 && angle1 != 180)//a

 {

 if (Open(a-1,b))

 {

 animate = true;

 angle1 = 180;

 }

 }

 else if(key==GLUT_KEY_RIGHT&& (int) b - b > -0.1 && angle1 != 0)//d

 {

 if (Open(a+1, b))

 {

 animate = true;

 angle1 = 0;

 }

 }

}

void specialUp(int key,int x,int y)

{

}

void P_Reinit()

{

 a = 13.5;

 b = 23;

 angle1 = 90;

 animate = false;

 Pac();

}

void G_Reinit(void)

{

 start_timer = 3;

Pac-Man

Dept of CSE, CEC 2010-11 33

 //ghost initial starting positions

 int start_x[4] = {11,12,15,16};

 float ghost_colors[4][3] = {{255,0,0},{120,240,120},{255,200,200},{255,125,0}};

 for (int i = 0; i < num_ghosts; i++)

 {

 ghost[i]->Reinit();

 ghost[i]->x = start_x[i];

 ghost[i]->y = 14;

 ghost[i]->eaten = false;

 ghost[i]->jail_timer = i*33 + 66;

 ghost[i]->max_speed = 0.1 - 0.01*(float)i;

 ghost[i]->speed = ghost[i]->max_speed;

 //colorize ghosts

 for (int j = 0; j < 3; j++)

 ghost[i]->color[j] = ghost_colors[i][j]/255.0f;

 }

}

void renderBitmapString(float x, float y, void *font, char *string)

{

 char *c;

 glRasterPos2f(x,y);

 for (c=string; *c != '\0'; c++)

 {

 glutBitmapCharacter(font, *c);

 }

}

void Write(char *string)

{

 while(*string)

 glutBitmapCharacter(GLUT_BITMAP_HELVETICA_18, *string++);

}

void print(char *string)

{

 while(*string)

 glutBitmapCharacter(GLUT_BITMAP_TIMES_ROMAN_24, *string++);

}

//Display Function->This Function Is Registered in glutDisplayFunc

void RenderScene()

{

 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

 //Through Movement->From One End To The Other

 if ((int)a == 27 && (int) b == 14 && angle1 == 0)

 {

Pac-Man

Dept of CSE, CEC 2010-11 34

a = 0;

 animate = true;

 }

 else

 if ((int)(a + 0.9) == 0 && (int) b == 14 && angle1 == 180)

 {

 a = 27;

 animate = true;

 }

 //Collision Detection For PacMan

 if (animate)

 Move();

 if(!(Open((int)(a + cos(M_PI/180*angle1)),

 (int)(b + sin(M_PI/180*angle1)))) &&

 a - (int)a < 0.1 && b - (int)b < 0.1)

 animate = false;

 if (tp_array[(int)(b+0.5)][(int)(a+0.5)]== 1)

 {

 tp_array[(int)(b+0.5)][(int)(a+0.5)]= 0;

 pebbles_left--;

 points+=1;

 }

 //Super Pebble Eating

 else if(tp_array[(int)(b+0.5)][(int)(a+0.5)] == 3)

 {

 tp_array[(int)(b+0.5)][(int)(a+0.5)]= 0;

 pebbles_left--;

 points+=5;

 for (int i = 0; i < 4; i++)

 {

 if (!ghost[i]->eaten)

 ghost[i]->Vulnerable(); //Calls A Function To Make Monster Weak

 }

 }

 //All The Pebbles Have Been Eaten

 if (pebbles_left == 0)

 {

 G_Reinit();

 P_Reinit();

 tp_restore();

 points=0;

 lives=3;

 }

 if (!gameover)

 Draw();

Pac-Man

Dept of CSE, CEC 2010-11 35

 for (int d = 0; d < num_ghosts; d++)

 {

 if (!gameover && start_timer == 0)

 ghost[d]->Update();

 if (!ghost[d]->in_jail &&

 ghost[d]->x - (int)ghost[d]->x < 0.1 && ghost[d]->y - (int)ghost[d]->y < 0.1)

 {

 bool open_move[4];

 //Finding Moves

 for (int ang = 0; ang < 4; ang++)

 {

 open_move[ang] = Open((int)(ghost[d]->x + cos(M_PI/180*ang*90)),

 (int)(ghost[d]->y + sin(M_PI/180*ang*90)));

 }

 //Chase Pac Man

 if (!ghost[d]->eaten)

 {

 if(ghost[d]->x - (int)ghost[d]->x < 0.1 && ghost[d]->y - (int)ghost[d]->y < 0.1)

 ghost[d]->Chase(a, b, open_move);

 }

 else

 {

 if(ghost[d]->x - (int)ghost[d]->x < 0.1 && ghost[d]->y - (int)ghost[d]->y <

0.1)

 ghost[d]->Chase(13, 11, open_move);

 }

 }

 if (ghost[d]->in_jail && !(Open((int)(ghost[d]->x + cos(M_PI/180*ghost[d]->angle)),

 (int)(ghost[d]->y + sin(M_PI/180*ghost[d]->angle)))) && ghost[d]->jail_timer > 0

&&ghost[d]->x - (int)ghost[d]->x < 0.1 && ghost[d]->y - (int)ghost[d]->y < 0.1)

 {

 ghost[d]->angle = (double)(((int)ghost[d]->angle + 180)%360);

 }

 if (!gameover && start_timer == 0)

 ghost[d]->Move();

 ghost[d]->Draw();

 if(!(ghost[d]->eaten))

 {

 bool collide = ghost[d]->Catch(a,b);

 //Monster Eats PacMan

 if (collide && !(ghost[d]->edible))

 {

 lives--;

Pac-Man

Dept of CSE, CEC 2010-11 36

 if (lives == 0)

 {

 gameover = true;

 lives=0;

 ghost[d]->game_over();

 }

 P_Reinit();

 d = 4;

 }

 //PacMan Eats Monster And Sends It To Jail

 else if (collide && ((ghost[d]->edible)))

 {

 ghost[d]->edible = false;

 ghost[d]->eaten = true;

 ghost[d]->speed = 1;

 }

 }

 }

 if(gameover==true)

 {

 glColor3f(1,0,0);

 renderBitmapString(-5, 0.5,GLUT_BITMAP_HELVETICA_18 ,"GAME OVER");

 }

 char tmp_str[40];

 glColor3f(1, 1, 0);

 glRasterPos2f(10, 18);

 sprintf(tmp_str, "Points: %d", points);

 Write(tmp_str);

 glColor3f(1, 0, 0);

 glRasterPos2f(-5, 18);

 sprintf(tmp_str, "PAC MAN");

 print(tmp_str);

 glColor3f(1, 1, 0);

 glRasterPos2f(-12, 18);

 sprintf(tmp_str, "Lives: %d", lives);

 Write(tmp_str);

 glutPostRedisplay();

 glutSwapBuffers();

}

void create_list_lib()

{

 //Set Up Maze Using Lists

 list[1] = glGenLists(1);

Pac-Man

Dept of CSE, CEC 2010-11 37

 glNewList(list[1], GL_COMPILE);

 //North Wall

 glBegin(GL_QUADS);

 glColor3f(0,0,1);

 glNormal3f(0.0, 1.0, 0.0);

 glVertex3f(1.0, 1.0, 1.0);

 glVertex3f(1.0, 1.0, 0.0);

 glVertex3f(0.0, 1.0, 0.0);

 glVertex3f(0.0, 1.0, 1.0);

 glEnd();

 glEndList();

 list[2] = glGenLists(1);

 glNewList(list[2], GL_COMPILE);

 glBegin(GL_QUADS);

 //North Wall

 glColor3f(0,0,1);

 glNormal3f(0.0, 1.0, 0.0);

 glVertex3f(1.0, 1.0, 1.0);

 glVertex3f(1.0, 1.0, 0.0);

 glVertex3f(0.0, 1.0, 0.0);

 glVertex3f(0.0, 1.0, 1.0);

 //South Wall

 glColor3f(0,0,1);

 glNormal3f(0.0, -1.0, 0.0);

 glVertex3f(1.0, 0.0, 0.0);

 glVertex3f(1.0, 0.0, 1.0);

 glVertex3f(0.0, 0.0, 1.0);

 glVertex3f(0.0, 0.0, 0.0);

 glEnd();

 glEndList();

 list[3] = glGenLists(1);

 glNewList(list[3], GL_COMPILE);

 glBegin(GL_QUADS);

 //North Wall

 glColor3f(0,0,1);

 glNormal3f(0.0f, 1.0f, 0.0f);

 glVertex3f(1.0, 1.0, 1.0);

 glVertex3f(1.0, 1.0, 0.0);

 glVertex3f(0.0, 1.0, 0.0);

 glVertex3f(0.0, 1.0, 1.0);

 //East Wall

 glColor3f(0,0,1);

 glNormal3f(1.0, 0.0, 0.0);

 glVertex3f(1.0, 1.0, 0.0);

 glVertex3f(1.0, 1.0, 1.0);

 glVertex3f(1.0, 0.0, 1.0);

 glVertex3f(1.0, 0.0, 0.0);

 glEnd();

 glEndList();

Pac-Man

Dept of CSE, CEC 2010-11 38

 list[4] = glGenLists(1);

 glNewList(list[4], GL_COMPILE);

 glBegin(GL_QUADS);

 //Top Wall

 glColor3f(-1,0.3,0);

 glNormal3f(1.0, 0.0, 1.0);

 glVertex3f(1, 1, 1.0);

 glVertex3f(0, 1, 1.0);

 glVertex3f(0, 0, 1.0);

 glVertex3f(1, 0, 1.0);

 glEnd();

 glEndList();

}

void init()

{

 /* float color[4];

 Enable Lighting.

 glEnable(GL_LIGHT0);

 glEnable(GL_LIGHTING);

 Ambient And Diffuse Lighting

 glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE);

 glEnable(GL_COLOR_MATERIAL);

 color[0] = 1.0f; color[1] = 1.0f; color[2] = 0.0f; color[3] = 0.0f;

 glLightfv(GL_LIGHT0, GL_DIFFUSE, color);

 color[0] = 1.0f; color[1] = 0.0f; color[2] = 1.0f; color[3] = 1.0f;

 glLightfv(GL_LIGHT0, GL_AMBIENT, color);*/

 glEnable(GL_NORMALIZE);

 glMatrixMode(GL_PROJECTION);

 glLoadIdentity();

 gluPerspective(60,1.33,0.005,100);

 glMatrixMode(GL_MODELVIEW);

 glLoadIdentity();

 gluLookAt(-1.5, 0, 40, -1.5, 0, 0, 0.0f,1.0f,0.0f);

}

void erase()

{

 glColor3f(0.1,0.0,0.0);

 glBegin(GL_POLYGON);

 glVertex2f(0,0);

 glVertex2f(0.5,0);

 glVertex2f(0.25,0.5);

 glEnd();

}

Pac-Man

Dept of CSE, CEC 2010-11 39

int main(int argc,char **argv)

{

 glutInit(&argc,argv);

 glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH);

 glutInitWindowSize(1200, 780);

 glutInitWindowPosition(0,0);

 glutCreateWindow("Pac GL 3D");

 init();

 glutDisplayFunc(RenderScene);

 create_list_lib();

 glutKeyboardFunc(mykey);

 glutSpecialFunc(specialDown);

 glutSpecialUpFunc(specialUp);

 glEnable(GL_DEPTH_TEST);

 int start_x[4] = {11,12,15,16};

 for (int ISO = 0; ISO < num_ghosts; ISO++)

 {

 ghost[ISO] = new Ghost(start_x[ISO],14);

 }

 float ghost_colors[4][3] = {{255,0,0},{120,240,120},{255,200,200},{255,125,0}};

 int ISO;

 for (ISO = 0; ISO < num_ghosts; ISO++)

 {

 ghost[ISO]->x = start_x[ISO];

 ghost[ISO]->y = 14;

 ghost[ISO]->eaten = false;

 ghost[ISO]->max_speed = 0.1 - 0.01*(float)ISO;

 ghost[ISO]->speed = ghost[ISO]->max_speed;

 //colorize ghosts

 for (int j = 0; j < 3; j++)

 ghost[ISO]->color[j] = ghost_colors[ISO][j]/255.0f;

 }

 for (ISO = 0; ISO < BOARD_X; ISO++)

 {

 for (int j = 0; j < BOARD_Y; j++)

 {

 tp_array[ISO][j] = pebble_array[ISO][j];

 }

 }

Pac-Man

Dept of CSE, CEC 2010-11 40

 pebbles_left = 244;

 glShadeModel(GL_SMOOTH);

 glutMainLoop();

 return 0;

}

Pac-Man

Dept of CSE, CEC 2010-11 41

BIBLIOGRAPHY

[1] The Red Book-OpenGL programming Guide,6
th

 edition

[2] Edward Angel Interactive Computer Graphics A Top-Down Approach with

OpenGL, 5
th

 edition, Addison and Wesley

[3] http://www.opengl.org/registry/

 [4] www.codeguru.com

 [5] www.openglforum.com

 [6] www.nehe.com.

http://www.codeguru.com/
http://www.openglforum.com/
http://www.nehe.com/

