
TIC-TAC-TOE

Dept of CSE,CEC 2010-11 1

CHAPTER 1

 INTRODUCTION

1.1 Computer Graphics

 Graphics provides one of the most natural means of communicating with a

computer, since our highly developed 2D Or 3D pattern-recognition abilities

allow us to perceive and process pictorial data rapidly.

 Computers have become a powerful medium for the rapid and economical

production of pictures.

 There is virtually no area in which graphical displays cannot be used to some

advantage.

 Graphics provide a so natural means of communicating with the computer that

they have become widespread.

 Interactive graphics is the most important means of producing pictures since

the invention of photography and television .

 We can make pictures of not only the real world objects but also of abstract

objects such as mathematical surfaces on 4D and of data that have no inherent

geometry.

 A computer graphics system is a computer system with all the components of

the general purpose computer system. There are five major elements in

system: input devices, processor, memory, frame buffer, output devices.

TIC-TAC-TOE

Dept of CSE,CEC 2010-11 2

1.2 OpenGL Technology

 OpenGL is the premier environment for developing portable, interactive 2D and 3D

graphics applications. Since its introduction in 1992, OpenGL has become the industry's most

widely used and supported 2D and 3D graphics application programming interface (API),

bringing thousands of applications to a wide variety of computer platforms.

 OpenGL fosters innovation and speeds application development by incorporating a

broad set of rendering, texture mapping, special effects, and other powerful visualization

functions. Developers can leverage the power of OpenGL across all popular desktop and

workstation platforms, ensuring wide application deployment.

 OpenGL Available Everywhere: Supported on all UNIX® workstations, and shipped

standard with every Windows 95/98/2000/NT and MacOS PC, no other graphics API

operates on a wider range of hardware platforms and software environments.

OpenGL runs on every major operating system including Mac OS, OS/2, UNIX, Windows

95/98, Windows 2000, Windows NT, Linux, OPENStep, and BeOS; it also works with every

major windowing system, including Win32, MacOS, Presentation Manager, and X-Window

System. OpenGL is callable from Ada, C, C++, Fortran, Python, Perl and Java and offers

complete independence from network protocols and topologies.

The OpenGL interface :Our application will be designed to access OpenGL directly through

functions in three libraries namely: gl,glu,glut.

TIC-TAC-TOE

Dept of CSE,CEC 2010-11 3

CHAPTER 2

 LITRETURE SURVEY

 The basic functions like glColor3f(…); glRotatef(..),glTranslatef(..) etc that are most

commonly used in the code are taken from the prescribed VTU Text book “INTERACTIVE

COMPUTER GRAPHICS” 5
th

 edition by Edward Angel.[1].

 The lab programs in the syllabus also serve as a basic template for creating a project. The

usage of colors and specifications are taken from the various programs that were taught in the

lab.[1].

The VTU prescribed text book serves as a huge database of functions and they are used in the

project.

The other reference books are:

F.S.Hill Jr: “COMPUTER GRAPHICS USING OPENGL , 2
nd

 EDITION”.

James D.Foley , John F.Hughes : “COMPUTER GRAPHICS ,1997.”

Donald Hearn and Pauline baker : “COMPUTER GRAPHICS” C-Version,2
nd

 edition,

Pearson Education , 2003.

TIC-TAC-TOE

Dept of CSE,CEC 2010-11 4

CHAPTER 3

 REQUIREMENTS AND SPECIFICATIONS

 3.1 Hardware Requirements

 The standard output device is assumed to be a Color Monitor. It is quite essential for

any graphics package to have this, as provision of color options to the user is a must. The

mouse, the main input device, has to be functional i.e. used to give input in the game. A

keyboard is used for controlling and inputting data in the form of characters, numbers i.e. to

change the user views . Apart from these hardware requirements there should be sufficient

hard disk space and primary memory available for proper working of the package to execute

the program. Pentium III or higher processor, 16MB or more RAM. A functional display

card.

 Minimum Requirements expected are cursor movement, creating objects like lines,

squares, rectangles, polygons, etc. Transformations on objects/selected area should be

possible. Filling of area with the specified color should be possible.

3.2 Software Requirements

The editor has been implemented on the OpenGL platform and mainly requires an

appropriate version of eclipse compiler to be installed and functional in ubuntu. Though it is

implemented in OpenGL, it is very much performed and independent with the restriction,

that there is support for the execution of C and C++ files. Text Modes is recommended.

 Developed Platform

Ubuntu 10.10

 Language Used In Coding

 C-language

 Tool Used In Coding

 Eclipse

TIC-TAC-TOE

Dept of CSE,CEC 2010-11 5

CHAPTER 4

SOFTWARE DESIGN:

4.1 SYSTEM DESIGN

 Existing System

Existing system for a graphics is the TC++ . This system will support only the 2D

graphics. 2D graphics package being designed should be easy to use and understand. It

should provide various option such as free hand drawing , line drawing , polygon drawing ,

filled polygons, flood fill, translation , rotation , scaling , clipping etc. Even though these

properties were supported, it was difficult to render 2D graphics cannot be . Very difficult to

get a 3Dimensional object. Even the effects like lighting , shading cannot be provided. So we

go for Eclipse software.

PROPOSED SYSTEM :

To achieve three dimensional effects, OpenGL software is proposed . It is software

which provides a graphical interface. It is a interface between application program and

graphics hardware. the advantages are:

1. OpenGL is designed as a streamlined.

2. It is a hardware independent interface i.e. it can be implemented on many

different hardware platforms.

3. With OpenGL, we can draw a small set of geometric primitives such as points,

lines and polygons etc.

4. Its provides double buffering which is vital in providing transformations.

5. It is event driven software.

6. It provides call back function.

TIC-TAC-TOE

Dept of CSE,CEC 2010-11 6

4.2 DETAILED DESIGN

TRANSFORMATION FUNCTIONS

Matrices allow arbitrary linear transformations to be represented in a consistent

format, suitable for computation. This also allows transformations to be concatenated easily

(by multiplying their matrices).

Linear transformations are not the only ones that can be represented by matrices.

Using homogenous coordinates,both affine transformation and perspective

projection on R
n
 can be represented as linear transformations on RP

n+1
 (that is, n+1-

dimensional real projective space). For this reason, 4x4 transformation matrices are widely

used in 3D computer graphics.

3-by-3 or 4-by-4 transformation matrices containing homogeneous coordinates are often

called, somewhat improperly, "homogeneous transformation matrices". However, the

transformations they represent are, in most cases, definitely non-homogeneous and non-

linear (like translation, roto-translation or perspective projection). And even the matrices

themselves look rather heterogeneous, i.e. composed of different kinds of elements (see

below). Because they are multi-purpose transformation matrices, capable of representing both

affine and projective transformations, they might be called "general transformation

matrices", or, depending on the application, "affine transformation" or "perspective

projection" matrices. Moreover, since the homogeneous coordinates describe a projective

vector space, they can also be called "projective space transformation matrices".

Finding the matrix of a transformation

If one has a linear transformation T(x) in functional form, it is easy to determine the

transformation matrix A by simply transforming each of the vectors of the standard

basis by T and then inserting the results into the columns of a matrix. In other words,

For example, the function T(x) = 5x is a linear transformation. Applying the above

process (suppose that n = 2 in this case) reveals that

TIC-TAC-TOE

Dept of CSE,CEC 2010-11 7

Examples in 2D graphics

Most common geometric transformations that keep the origin fixed are linear,

including rotation, scaling, shearing, reflection, and orthogonal projection; if an

affine transformation is not a pure translation it keeps some point fixed, and that

point can be chosen as origin to make the transformation linear. In two dimensions,

linear transformations can be represented using a 2×2 transformation matrix.

Rotation

For rotation by an angle θ anticlockwise about the origin, the functional form is x'

= xcosθ − ysinθ and y' = xsinθ + ycosθ. Written in matrix form, this becomes:

Similarly, for a rotation clockwise about the origin, the functional form is x'

= xcosθ + ysinθ and y' = − xsinθ + ycosθ and the matrix form is:

 Scaling

For scaling (that is, enlarging or shrinking), we have

 and . The matrix form is:

When , then the matrix is a squeeze mapping and

preserves areas in the plane.

TIC-TAC-TOE

Dept of CSE,CEC 2010-11 8

 CHAPTER 5

 IMPLEMENTATION

5.1 FUNCTIONS USED

Void glColor3f(float red, float green, float blue);

This function is used to mention the color in which the pixel should appear. The number 3

specifies the number of arguments that the function would take. ‘f ’ gives the type that is

float. The arguments are in the order RGB(Red, Green, Blue). The color of the pixel can be

specified as the combination of these 3 primary colors.

Void glClearColor(int red, int green, int blue, int alpha);

This function is used to clear the color of the screen. The 4 values that are passed as

arguments for this function are (RED, GREEN, BLUE, ALPHA) where the red green and

blue components are taken to set the background color and alpha is a value that specifies

depth of the window. It is used for 3D images.

Void glutKeyboardFunc();

void glutKeyboardFunc(void (*func)(unsigned char key,

 int x, int y));

where func is the new keyboard callback function. glutKeyboardFunc sets the keyboard

callback for the current window. When a user types into the window, each key press

generating an ASCII character will generate a keyboard callback. The key callback parameter

is the generated ASCII character. The x and y callback parameters indicate the mouse

location in window relative coordinates when the key was pressed. When a new window is

created, no keyboard callback is initially registered, and ASCII key strokes in the window are

ignored. Passing NULL to glutKeyboardFunc disables the generation of keyboard callbacks.

TIC-TAC-TOE

Dept of CSE,CEC 2010-11 9

Void glFlush();

Different GL implementations buffer commands in several different locations, including

network buffers and the graphics accelerator itself. glFlush empties all of these buffers,

causing all issued commands to be executed as quickly as they are accepted by the actual

rendering engine. Though this execution may not be completed in any particular time period,

it does complete in finite time.

Void glMatrixMode(GLenum mode);

where mode Specifies which matrix stack is the target for subsequent matrix

operations. Three values are accepted: GL_MODELVIEW, GL_PROJECTION, and

GL_TEXTURE. The initial value is GL_MODELVIEW.

glMatrixMode sets the current matrix mode. mode can assume one of three values:

 GL_MODELVIEW Applies subsequent matrix

 operations to the modelview matrix

 stack.

 GL_PROJECTION Applies subsequent matrix

 operations to the projection matrix

 stack.

void glViewport(GLint x, GLint y, GLsizei width, GLsizei height)

where x, y Specify the lower left corner of the viewport rectangle, in pixels. The initial value

is (0, 0).

width, height Specify the width and height of the viewport. When a GL context is first

attached to a surface (e.g. window), width and height are set to the dimensions of that surface.

glViewport specifies the affine transformation of x and y from normalized device coordinates

to window coordinates. Let (xnd, ynd) be normalized device coordinates. Then the window

coordinates (xw, yw) are computed as follows:

TIC-TAC-TOE

Dept of CSE,CEC 2010-11 10

xw = (xnd + 1) width/2 + x

yw = (ynd + 1) height/2 + y

Viewport width and height are silently clamped to a range that depends on the

implementation. To query this range, call glGetInteger with argument

GL_MAX_VIEWPORT_DIMS.

void glutInit(int *argcp, char **argv);

glutInit will initialize the GLUT library and negotiate a session with the window system.

During this process, glutInit may cause the termination of the GLUT program with an error

message to the user if GLUT cannot be properly initialized. Examples of this situation

include the failure to connect to the window system, the lack of window system support for

OpenGL, and invalid command line options.glutInit also processes command line options,

but the specific options parse are window system dependent.

void glutReshapeFunc(void (*func)(int width, int height));

glutReshapeFunc sets the reshape callback for the current window. The reshape callback is

triggered when a window is reshaped. A reshape callback is also triggered immediately

before a window's first display callback after a window is created or whenever an overlay for

the window is established. The width andheight parameters of the callback specify the new

window size in pixels. Before the callback, the current window is set to the window that has

been reshaped.

If a reshape callback is not registered for a window or NULL is passed

to glutReshapeFunc (to deregister a previously registered callback), the default reshape

callback is used. This default callback will simply

void glutMainLoop(void);

glutMainLoop enters the GLUT event processing loop. This routine should be called at most

once in a GLUT program. Once called, this routine will never

glutPostRedisplay(): glutPostRedisplay, glutPostWindowRedisplay — marks the current

or specified window as needing to be redisplayed.

http://www.khronos.org/opengles/documentation/opengles1_0/html/glGetInteger.html

TIC-TAC-TOE

Dept of CSE,CEC 2010-11 11

5.2 ALGORITHM

 int minimax(char _board[9])

{

 short int i;

 int bestValue = +INFINITY, index = 0;

 char bestMoves[9] = {0};

 for(i = 0; i < 9; i++)

 {

 if(_board[i] == empty)

 {

 _board[i] = o;

 int value = maxSearch(_board);

 if(value < bestValue)

 {

 bestValue = value;

 index = 0;

 bestMoves[index] = i;

 }

 else if(value == bestValue)

 bestMoves[index++] = i;

 _board[i] = empty;

 }

 }

 if(index > 0)

 index = rand() % index;

 return bestMoves[index];

}

int minSearch(char _board[9])

{

 short int i;

 int positionValue = gameState(_board);

 if(positionValue == DRAW) return 0;

TIC-TAC-TOE

Dept of CSE,CEC 2010-11 12

 if(positionValue != INPROGRESS) return positionValue;

 int bestValue = +INFINITY;

 for(i = 0; i < 9; i++)

 {

 if(_board[i] == empty)

 {

 _board[i] = o;

 int value = maxSearch(_board);

 if(value < bestValue)

 bestValue = value;

 _board[i] = empty;

 }

 }

 return bestValue;

}

int maxSearch(char _board[9])

{

 short int i;

 int positionValue = gameState(_board);

 if(positionValue == DRAW) return 0;

 if(positionValue != INPROGRESS) return positionValue;

 int bestValue = -INFINITY;

 for(i = 0; i < 9; i++)

 {

 if(_board[i] == empty)

 {

 _board[i] = x;

 int value = minSearch(_board);

 if(value > bestValue)

 bestValue = value;

 _board[i] = empty;

 }

 }

 return bestValue;

TIC-TAC-TOE

Dept of CSE,CEC 2010-11 13

}

CHAPTER 6

 SNAP SHOTS:

1:Snap Shot Showing Instructions before Starting.

2. Snap Shot Showing to start the game:

TIC-TAC-TOE

Dept of CSE,CEC 2010-11 14

3. Snap Shot Showing 0’s and X’s as the input :

4. Snap Shot Showing if player wins:

TIC-TAC-TOE

Dept of CSE,CEC 2010-11 15

5. Snap Shot Showing if computer wins:

6.Snap Shot Showing a Tie:

TIC-TAC-TOE

Dept of CSE,CEC 2010-11 16

CHAPTER 7

CONCLUSION AND FUTURE SCOPE:

The full designing and creating of Tic-Tac-Toe has been executed under ubuntu operating

system using Eclipse, this platform provides a and satisfies the basic need of a good compiler.

Using GL/glut.h library and built in functions make it easy to design good graphics package

such as this simple game.

The following example game is won by the first player, X:

A player can play perfect tic-tac-toe (win or draw) given they move according to the highest

possible moves:

1. Win: If the player has two in a row, play the third to get three in a row.

2. Block: If the opponent has two in a row, play the third to block them.

3. Fork: Create an opportunity where you can win in two ways.

4. Block opponent's fork:

o Option 1: Create two in a row to force the opponent into defending, as long as

it doesn't result in them creating a fork or winning. For example, if "X" has a

corner, "O" has the center, and "X" has the opposite corner as well, "O" must

not play a corner in order to win. (Playing a corner in this scenario creates a

fork for "X" to win.)

o Option 2: If there is a configuration where the opponent can fork, block that

fork.

5. Center: Play the center.

6. Opposite corner: If the opponent is in the corner, play the opposite corner.

7. Empty corner: Play in a corner square.

8. Empty side: Play in a middle square on any of the 4 sides.

http://en.wikipedia.org/wiki/File:Tic-tac-toe-game-1.svg

TIC-TAC-TOE

Dept of CSE,CEC 2010-11 17

APPENDIX:

// Tic Tac Toe or X's and O's.

// Keyboard input

// 'v' = view ortho/perspective

// 'l' = lighting on/of

#include <GL/glut.h> // glut (gl utility toolkit) basic windows functions,

keyboard, mouse.

#include <stdio.h> // standard (I/O library)

#include <stdlib.h> // standard library (set of standard C functions

#include <math.h> // Math library (Higher math functions)

#include<string.h>

// lighting

GLfloat LightAmbient[]= { 0.5f, 0.5f, 0.5f, 1.0f };

GLfloat LightDiffuse[]= { 0.5f, 0.5f, 0.5f, 1.0f };

GLfloat LightPosition[]= { 5.0f, 25.0f, 5.0f, 1.0f };

GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };

int abc=0;

// mouse variables: Win = windows size, mouse = mouse position

int mouse_x, mouse_y, Win_x, Win_y, object_select;

// state variables for Orho/Perspective view, lighting on/off

static int view_state = 0, light_state = 0;

// Use to spin X's and O's

int spin, spinboxes;

// Win = 1 player wins, -1 computer wins, 2 tie.

// player or computer; 1 = X, -1 = O

// start_game indicates that game is in play.

int player, computer, win, start_game;

// alingment of boxes in which one can win

// We have 8 posiblities, 3 accross, 3 down and 2 diagnally

//

// 0 | 1 | 2

// 3 | 4 | 5

// 6 | 7 | 8

//

// row, colunm, diagnal information

static int box[8][3] = {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}, {0, 3, 6},

 {1, 4, 7}, {2, 5, 8}, {0, 4, 8}, {2, 4, 6}};

// Storage for our game board

// 1 = X's, -1 = O's, 0 = open space

int box_map[9];

// center x,y location for each box

int object_map[9][2] = {{-6,6},{0,6},{6,6},{-6,0},{0,0},{6,0},{-6,-6},{0,-

6},{6,-6}};

// quadric pointer for build our X

TIC-TAC-TOE

Dept of CSE,CEC 2010-11 18

GLUquadricObj *Cylinder;

// Begin game routine

void init_game(void)

{

int i;

// Clear map for new game

for(i = 0; i < 9; i++)

 {

 box_map[i] = 0;

 }

// Set 0 for no winner

win = 0;

start_game = 1;

}

// Check for three in a row/colunm/diagnal

// returns 1 if there is a winner

int check_move(void)

{

int i, t = 0;

//Check for three in a row

for(i = 0; i < 8; i++)

 {

 t = box_map[box[i][0]] + box_map[box[i][1]] + box_map[box[i][2]];

 if ((t == 3) || (t == -3))

 {

 spinboxes = i;

 return(1);

 }

 }

t = 0;

// check for tie

for(i = 0; i < 8; i++)

 {

 t = t + abs(box_map[box[i][0]]) + abs(box_map[box[i][1]]) + abs(

box_map[box[i][2]]);

 }

if (t == 24) return(2);

return(0);

}

// Do we need to block other player?

int blocking_win(void)

{

int i, t;

for(i = 0; i < 8; i++)

 {

 t = box_map[box[i][0]] + box_map[box[i][1]] + box_map[box[i][2]];

 if ((t == 2) || (t == -2))

 {

 // Find empty

 if (box_map[box[i][0]] == 0) box_map[box[i][0]] = computer;

 if (box_map[box[i][1]] == 0) box_map[box[i][1]] = computer;

TIC-TAC-TOE

Dept of CSE,CEC 2010-11 19

 if (box_map[box[i][2]] == 0) box_map[box[i][2]] = computer;

 return(1);

 }

 }

 return(0);

}

// check for a free space in corner

int check_corner(void)

{

int i;

if (box_map[0] == 0)

 {

 box_map[0] = computer;

 i = 1;

 return(1);

 }

if (box_map[2] == 0)

 {

 box_map[2] = computer;

 i = 1;

 return(1);

 }

if (box_map[6] == 0)

 {

 box_map[6] = computer;

 i = 1;

 return(1);

 }

if (box_map[8] == 0)

 {

 box_map[8] = computer;

 i = 1;

 return(1);

 }

 return(0);

}

// Check for free space in row

int check_row(void)

{

if (box_map[4] == 0)

 {

 box_map[4] = computer;

 return(1);

 }

if (box_map[1] == 0)

 {

 box_map[1] = computer;

 return(1);

 }

if (box_map[3] == 0)

 {

TIC-TAC-TOE

Dept of CSE,CEC 2010-11 20

 box_map[3] = computer;

 return(1);

 }

if (box_map[5] == 0)

 {

 box_map[5] = computer;

 return(1);

 }

if (box_map[7] == 0)

 {

 box_map[7] = computer;

 return(1);

 }

 return(0);

}

// logic for computer's turn

int computer_move()

{

if (blocking_win() == 1) return(1);

if (check_corner() == 1) return(1);

if (check_row() == 1) return(1);

 return(0);

}

// I use this to put text on the screen

void Sprint(int x, int y, char *st)

{

 int l,i;

 l=strlen(st); // see how many characters are in text string.

 glRasterPos2i(x, y); // location to start printing text

 for(i=0; i < l; i++) // loop until i is greater then l

 {

 glutBitmapCharacter(GLUT_BITMAP_TIMES_ROMAN_24, st[i]); //

Print a character on the screen

 }

}

// This creates the spinning of the cube.

static void TimeEvent(int te)

{

 spin++; // increase cube rotation by 1

 if (spin > 360) spin = 180; // if over 360 degress, start back at

zero.

 glutPostRedisplay(); // Update screen with new rotation data

 glutTimerFunc(8, TimeEvent, 1); // Reset our timmer.

}

// Setup our Opengl world, called once at startup.

void init(void)

{

 glClearColor (0.6,0.6,0.4,0.0); // When screen cleared, use black.

 glShadeModel (GL_SMOOTH); // How the object color will be rendered

smooth or flat

 glEnable(GL_DEPTH_TEST); // Check depth when rendering

TIC-TAC-TOE

Dept of CSE,CEC 2010-11 21

 // Lighting is added to scene

 glLightfv(GL_LIGHT1 ,GL_AMBIENT, LightAmbient);

 glLightfv(GL_LIGHT1 ,GL_DIFFUSE, LightDiffuse);

 glLightfv(GL_LIGHT1 ,GL_POSITION, LightPosition);

 glEnable(GL_LIGHTING); // Turn on lighting

 glEnable(GL_LIGHT1); // Turn on light 1

 start_game = 0;

 win = 0;

 // Create a new quadric

 Cylinder = gluNewQuadric();

 gluQuadricDrawStyle(Cylinder, GLU_FILL);

 gluQuadricNormals(Cylinder, GLU_SMOOTH);

 gluQuadricOrientation(Cylinder, GLU_OUTSIDE);

}

void Draw_O(int x, int y, int z, int a)

{

glPushMatrix();

glTranslatef(x, y, z);

glRotatef(a, 1, 0, 0);

glutSolidTorus(0.5, 2.0, 8, 16);

glPopMatrix();

}

void Draw_X(int x, int y, int z, int a)

{

glPushMatrix();

glTranslatef(x, y, z);

glPushMatrix();

glRotatef(a, 1, 0, 0);

glRotatef(90, 0, 1, 0);

glRotatef(45, 1, 0, 0);

glTranslatef(0, 0, -3);

gluCylinder(Cylinder, 0.5, 0.5, 6, 16, 16);

//glutSolidCone(2.5, 3.0, 16, 8);

glPopMatrix();

glPushMatrix();

glRotatef(a, 1, 0, 0);

glRotatef(90, 0, 1, 0);

glRotatef(315, 1, 0, 0);

glTranslatef(0, 0, -3);

gluCylinder(Cylinder, 0.5, 0.5, 6, 16, 16);

//glutSolidCone(2.5, 3.0, 16, 8);

glPopMatrix();

glPopMatrix();

}

// Draw our world

void display(void)

{

 if(abc==3)

 {

 //int mk=0;

 // glColor3f(0.0,1.0,0.0);

 glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

TIC-TAC-TOE

Dept of CSE,CEC 2010-11 22

//Clear the screen

 glColor3f(0.0,1.0,0.0);

 glMatrixMode (GL_PROJECTION); // Tell opengl that we are

doing project matrix work

 glLoadIdentity(); // Clear the matrix

 glOrtho(-9.0, 9.0, -9.0, 9.0, 0.0, 30.0); // Setup an

Ortho view

 glMatrixMode(GL_MODELVIEW); // Tell opengl that we are

doing model matrix work. (drawing)

 glLoadIdentity(); // Clear the model matrix

 glDisable(GL_COLOR_MATERIAL);

 glDisable(GL_LIGHTING);

 glColor3f(0.0, 0.0, 1.0);

 Sprint(-2, 0, "Project by");

 Sprint(-2, -1, "Gajanan and Nitin");

 Sprint(-3, -2, "To Start press right button");

 Sprint(-3, -3, "right button for X's");

 Sprint(-3, -4, "and left for O's");

 glutSwapBuffers();

 }

 else if(abc==0)

{

 glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); //Clear the

screen

 glMatrixMode (GL_PROJECTION); // Tell opengl that we are doing

project matrix work

 glLoadIdentity(); // Clear the matrix

 glOrtho(-9.0, 9.0, -9.0, 9.0, 0.0, 30.0); // Setup an Ortho view

 glMatrixMode(GL_MODELVIEW); // Tell opengl that we are doing model

matrix work. (drawing)

 glLoadIdentity(); // Clear the model matrix

 glDisable(GL_COLOR_MATERIAL);

 glDisable(GL_LIGHTING);

 glColor3f(0.0, 0.0, 1.0);

 Sprint(-4, 0, "Project by Gajanana G Bhat and Nitin Kulkarni");

 Sprint(-3, -1, "Right Click to Start the Game");

 glutSwapBuffers();

}

else

{

int ix, iy;

int i;

int j;

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); //Clear the screen

glMatrixMode (GL_PROJECTION); // Tell opengl that we are doing project

matrix work

glLoadIdentity(); // Clear the matrix

glOrtho(-9.0, 9.0, -9.0, 9.0, 0.0, 30.0); // Setup an Ortho view

glMatrixMode(GL_MODELVIEW); // Tell opengl that we are doing model matrix

work. (drawing)

glLoadIdentity(); // Clear the model matrix

TIC-TAC-TOE

Dept of CSE,CEC 2010-11 23

glDisable(GL_COLOR_MATERIAL);

glDisable(GL_LIGHTING);

glColor3f(1.0, 0.0, 0.0);

//printing final result of the game

if (win == 1) Sprint(-2, 1, "congratulations you win");

if (win == -1) Sprint(-2, 1, "Computer win");

if (win == 2) Sprint(-2, 1, "Tie");

// Setup view, and print view state on screen

if (view_state == 1)

 {

 glColor3f(0.0, 0.0, 1.0);

 Sprint(-3, 8, "Perspective view");

 glMatrixMode (GL_PROJECTION);

 glLoadIdentity();

 gluPerspective(60, 1, 1, 30);

 glMatrixMode(GL_MODELVIEW);

 glLoadIdentity();

 }else

 {

 glColor3f(1.0, 0.0, 0.0);

 Sprint(-2, 8, "Ortho view");

 }

// Lighting on/off

if (light_state == 1)

 {

 glDisable(GL_LIGHTING);

 glDisable(GL_COLOR_MATERIAL);

 }else

 {

 glEnable(GL_LIGHTING);

 glEnable(GL_COLOR_MATERIAL);

 }

gluLookAt(0, 0, 20, 0, 0, 0, 0, 1, 0);

// Draw Grid

for(ix = 0; ix < 4; ix++)

 {

 glPushMatrix();

 glColor3f(1,1,1);

 glBegin(GL_LINES);

 glVertex2i(-9 , -9 + ix * 6);

 glVertex2i(9 , -9 + ix * 6);

 glEnd();

 glPopMatrix();

 }

 for(iy = 0; iy < 4; iy++)

 {

 glPushMatrix();

 glColor3f(1,1,1);

 glBegin(GL_LINES);

 glVertex2i(-9 + iy * 6, 9);

 glVertex2i(-9 + iy * 6, -9);

 glEnd();

 glPopMatrix();

 }

glColorMaterial(GL_FRONT, GL_AMBIENT);

TIC-TAC-TOE

Dept of CSE,CEC 2010-11 24

glColor4f(0.5, 0.5, 0.5, 1.0);

glColorMaterial(GL_FRONT, GL_EMISSION);

glColor4f(0.0, 0.0, 0.0, 1.0);

glColorMaterial(GL_FRONT, GL_SPECULAR);

glColor4f(0.35, 0.35, 0.35, 1.0);

glColorMaterial(GL_FRONT, GL_DIFFUSE);

glColor4f(0.69, 0.69, 0.69, 1.0);

//glDisable(GL_COLOR_MATERIAL);

glColor3f(0.0, 0.0, 0.0); // Cube color

//glEnable(GL_COLOR_MATERIAL);

// Draw object in box's

for(i = 0; i < 9; i++)

 {

 j = 0;

 if (abs(win) == 1)

 {

 if ((i == box[spinboxes][0]) || (i == box[spinboxes][1]) || (i ==

box[spinboxes][2]))

 {

 j = spin;

 }else j = 0;

 }

 if(box_map[i] == 1) Draw_X(object_map[i][0], object_map[i][1], -1, j);

 if(box_map[i] == -1) Draw_O(object_map[i][0], object_map[i][1], -1, j);

 }

//glDisable(GL_COLOR_MATERIAL);

glutSwapBuffers();

}

}

// This is called when the window has been resized.

void reshape (int w, int h)

{

 Win_x = w;

 Win_y = h;

 glViewport (0, 0, (GLsizei) w, (GLsizei) h);

 glMatrixMode (GL_PROJECTION);

 glLoadIdentity ();

}

// Read the keyboard

void keyboard (unsigned char key, int x, int y)

{

 switch (key)

 {

 case 'v':

 case 'V':

 view_state = abs(view_state -1);

 break;

 case 'b':

 case 'B':

 light_state = abs(light_state -1);

 break;

 case 27:

 exit(0); // exit program when [ESC] key presseed

 break;

TIC-TAC-TOE

Dept of CSE,CEC 2010-11 25

 default:

 break;

 }

}

void mouse(int button, int state, int x, int y)

{

// We convert windows mouse coords to out openGL coords

mouse_x = (18 * (float) ((float)x/(float)Win_x))/6;

mouse_y = (18 * (float) ((float)y/(float)Win_y))/6;

// What square have they clicked in?

object_select = mouse_x + mouse_y * 3;

if (start_game == 0)

 {

 if ((button == GLUT_RIGHT_BUTTON) && (state == GLUT_DOWN))

 {

 player = 1;

 computer = -1;

 init_game();

 computer_move();

 return;

 }

 if ((button == GLUT_LEFT_BUTTON) && (state == GLUT_DOWN))

 {

 player = -1;

 computer = 1;

 init_game();

 return;

 }

 }

if (start_game == 1)

 {

 if ((button == GLUT_LEFT_BUTTON) && (state == GLUT_DOWN))

 {

 if (win == 0)

 {

 if (box_map[object_select] == 0)

 {

 box_map[object_select] = player;

 win = check_move();

 if (win == 1)

 {

 start_game = 0;

 return;

 }

 computer_move();

 win = check_move();

 if (win == 1)

 {

 win = -1;

 start_game = 0;

 }

 }

 }

 }

}

TIC-TAC-TOE

Dept of CSE,CEC 2010-11 26

if (win == 2)start_game = 0;

}

void menu(int choice)

{

 switch(choice)

 {

 case 1: abc=1;

 glutMouseFunc(mouse);

 break;

 case 2:

 view_state = abs(view_state -1);

 break;

 case 3: abc=3;

 glutMouseFunc(mouse);

 break;

 case 4:

 exit(0);

 break;

 }

}

// Main program

int main(int argc, char** argv)

{

 glutInit(&argc, argv);

 glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);

 glutInitWindowSize (850,600);

 glutInitWindowPosition (10, 10);

 glutCreateWindow (argv[0]);

 glutSetWindowTitle("X's and O's 3D");

 init ();

 glutCreateMenu(menu);

 glutAddMenuEntry("start game",1);

 glutAddMenuEntry("perspective view",2);

 glutAddMenuEntry("help",3);

 glutAddMenuEntry("Quit",4);

 glutAttachMenu(GLUT_RIGHT_BUTTON);

 glutDisplayFunc(display);

 glutReshapeFunc(reshape);

 glutKeyboardFunc(keyboard);

 //glutMouseFunc(mouse);

 glutTimerFunc(50, TimeEvent, 1);

 glutMainLoop();

 return 0;

}

TIC-TAC-TOE

Dept of CSE,CEC 2010-11 27

BIBLIOGRAPHY

1. Reference from Interactive Computer Graphics by EDWARD ANGEL

2. Internet source

 www.angelfire.com

 Wikipedia.org.

 Google.

 Opengl.org.

http://www.angelfire.com/

