Learning Objectives

* Learn about recurrence relations

* Learn the relationship between sequences and recurrence relations

* Explore how to solve recurrence relations by iteration

* Learn about linear homogeneous recurrence relations and how to

solve them
* Become familiar with linear nonhomogeneous recurrence relations

Sequences and Recurrence Relations

ExamPLE 8.1.2

Consider the following two sequences:

S 3,5,7,9,. .
S 3,9,27,81, ...
We can find a formula for the nth term of sequences § and S by observing the
pattern of the sequences.
St 2-1+1,2-24+1,2.34+ 12441, ...
S 81,832,383 34 .
For S, a, =2n+ 1 for » = 1, and4or &, a, = 3" for n = 1. This type of for-
mula is called an explicit formula for the sequence, because using this formula

we can directly find any term of the sequence without using other terms of the
sequence. For example, a, =23 +1 =7.

ExamPLE 8.1.3

Let 8 denote the sequence
101,2,3,5,8, 13,21, ...

For this sequence! the explicit formula is not obvious. If we observe closely, how-
ever, we find that the pattern of the sequence is such that any term after the second
term is the sum of the preceding two terms. Now

Jrdterm =2 =1 4+ 1 = Ist term + 2nd term

dthterm =3 =1 + 2 = Znd term + 5rd term

Hthterm =5 = 2 + 3 = 3rd term + 4th term

Hth term = 8 = 3 + 5 = 4th term + 5ith term

7th term = 13 = 5 + 8 = bth term + 6Hth term

Hence, the sequence § can be defined by the equation

o = faot t e (8.1)

forall # = 3 and
1
N (8.2)



ExAmPLE 8.1.4

Consider the function f : " — Z* defined by
Sl =1,
finy=nfin—1) foralln =1
Then
fiy=1=10,
fihy=1-fi0)y=1=1,
fiZy=2-filh=2-1=2=21,
fi3=3-f12)=5-2.-1=6=3,
and so on. Here f(n) = nfin— 1) for all n = 1 is the récurrence relation, and

J10) =1 is the initial condition for the function f. Notice that the function [ is
nothing but the factorial function, i.e., fin) = »! for all n =k

Sequences and Recurrence Relations

Let us consider the function f as given i (8.3). If we write a, = f(n), then
(8.3) translates into the following equation:

iy = 20,4+ ayoe . foralln = 2.

That is, a, is defined in terms‘of @,y and a,_s. As remarked previously, such an
equation is called a recurrence relation. Moreover, (8.4) translates into a4, =5
and g1 = 7. These are called the initial conditions for the recurrence relation.

DEFINITION 8.1.5

Arecurrence relation for asequence ay, ar, az,. .., a,,. .. isan equation that relates
a, to some of the terms ay, ay, @, ..., @,_s, a,_ for all integers n with n = k, where
k is a nonhegative integer. The initial conditions for the recurrence relation are
a set of values that explicitly define some of the members of ay, ar, @, ..., m-1.

The equation
ity = 2a,-1 + @, foralln = 2,

as defined above, relates a, to a,_; and a,_.». Here k = 2. So this is a recurrence
relation with initial conditions ay =5 and q; = 7.



ExaAmMPLE 8.1.9

Number of subsets of a finite set. Let 5, denote the number of subsets of a set
A with n elements, n = (). In Worked-Out Exercise Y (Chapter 2, page 144), we
proved that

5 =1,
5, =25,.9, ifn=10

Hence, a recurrence relation for the sequence 5, 51, %, 83, 54, ... s
S =25,1, n=1

and an initial condition is 5, = 1.

ExampLE 8.1.10

Compound Interest. Sam received ayearly bonus and deposited $10,000 in alocal
bank yielding 7% interest compounded annually. Sam wants to know the total
amount accumulated after n vears. Let 4, denote the total ameunt accumulated
after » vears. Let us determine a recurrence relation and initial conditions for the
sequence Ap, A, Az As. L

The amount accumulated after one year is the initial amount plus the interest
on the initial amount. Now A, is the amount accumulated after n — 1 vears.
This implies that the amount at the beginning of nth year is A,_1. It follows that
the total amount accumulated after n years is the amount at the beginning of the
nth vear plus the interest on this amountd Becanse the intevest rate is 7%, the
interest earned during the nth vear is (L0714, 1. Hence,

Ay = Ay 100704,

= OFA, 0, n=1,
Ay = 100040,

* Tower of Hanoi

- In the nineteenth century, a game called the Tower of Hanoi became
popular in Eurepe. This game represents work that is under way in the
temple of Brahma.

- There are three pegs, with one peg containing 64 golden disks. Each
golden disk 1s slightly smaller than the disk below it.

- The task is'to move all 64 disks from th:: first peg to the third peg.

FIGURE 8.1 Tower of Hanoi
problem with three disks



The rules for moving the disks are as follows:
1. Only one disk can be moved at a time.
2. The removed disk must be placed on one of the pegs.
3. A larger disk cannot be placed on top of a smaller disk.

The objective is to determine the minimum number of moves required
to transfer the disks from the first peg to the third peg.

First consider the case in which the first peg contains only one disk.
— The disk can be moved directly from peg 1 to peg 3.

Consider the case in which the first peg contains two disks.
— First move the first disk from peg 1 to peg 2.
— Then move the second disk from peg 1 to peg 3.
— Finally, move the first disk from peg 2 to peg 3.

Consider the case in which the first peg contains three disks and then
generalize this to the case of 64 disks (in fact, to an arbitrary number
of disks).
— Suppose that peg 1 contains three disks. To move disk number
3 to peg 3, the top two disks must first be moved to peg 2. Disk
number 3 can then be moved from peg 1 to peg 3. To move the
top two disks from peg 2 to peg 3, use the same strategy as
before. This time use peg 1 .as the intermediate peg.
— Figure 8.2 shows a solution to the Tower of Hanoi problem
with three disks.
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A solution to the Tower of HEII"IDI problem with three disks



* Generalize this problem to the case of 64 disks. To begin, the first peg
contains all 64 disks. Disk number 64 cannot be moved from peg 1 to
peg 3 unless the top 63 disks are on the second peg. So first move the
top 63 disks from peg 1 to peg 2, and then move disk number 64 from
peg 1 to peg 3. Now the top 63 disks are all on peg 2.

* To move disk number 63 from peg 2 to peg 3, first move the top 62
disks from peg 2 to peg 1, and then move disk number 63 from peg 2
to peg 3. To move the remaining 62 disks, follow a similar procedure.

* In general, let peg 1 contain n > 1 disks.
1. Move the top n — 1 disks from peg 1 to peg 2 using peg 3 as the
intermediate peg.
2. Move disk number n from peg 1 to peg 3.
3. Move the top n — 1 disks from peg 2 to peg 3.using peg 1

Let ¢, denote the number of moves required toamove » disks, n = (), from peg
| to peg 3. Step (1) requires us to move the top » = Jdisks from peg | to peg 2,
which requires ¢,_; moves. Step (2) requires us to move the nth disk from peg 1
tor peg 3, which requires 1 move. Step (3) requires us to move n — | disks from
peg 2 to peg 3, which requires ¢, maves. Thus, it follows that

0 =200+ 1, iftn =1, (8.5)
and
n =l (8.6)

oo

-1 with the initial condi-

Now (8.5) is a recurrence relation for the sequence {¢,}
tion given by (8.6).

DEFINITIONZ.1.43

Suppesea recurrence relation for a sequence ag, 4y, @&, ..., a,,..., is given. By a
solution of the recurrence velation we mean to obtain an explicit formula for a,, i.e.,
to find an expression for a, that does not involve any other a;.



Let § be the sequence {a,},, where
i, = Ta,_1 —ba,_» ftorallm=2 (H.8)

Because a, is defined in terms of the preceding terms a,_) and a,_s, Equation
(¥.8) is a recurrence relation.

Let us show that @, =5 =5+ 0. r is a solution of Equation (8.8). Here ay =
5, =5, m =D5,...,a, =5, and so on. Let us evaluate the right side of Equation

(B.8), Le.,
Ti,1—06a,_o=7-5—-06:-5=3—-30=5=a,.

Hence, a, = 5, n = () is a solution of the recurrence relation (8.8).
Now let @, = 6". Here ay=6"=1, qy =6' =6, =6 =396, .., 1, o =
_—) — . . - .
672 @, 1 = 6", q, = 6", and so on. Let us evaluate the right side of Equation
(8.8}, using the terms of this sequence. We have

T'q.'.-—l - '[:!fﬁjl._;,: =7 ﬁ“" —6H- ﬁJr—E

=9. ﬁJr—| ( ﬁ.lr—l
= (7 =1y 6"
=f. il

=ﬁ.||'

= fl,.

Therefore, a, = 6", n = () is alsoa solutien of the recurrence relation (8.8).
Note that the expression g, = 2", » = () is not a solution of Equation (8.8).

Linear Homogenous Recurrence Relations

DEFINITION 8.2.1

Let ag, ay, @, .4 @y, - . be a sequence of numbers. A linear homogeneous recur-
rence relation of arder k& with constant coetficients is a recurrence relation of the

form

@p = 0181+ 22+ tatlp_5 + -+ CGhly_ ks (8.31)

where ¢, # 0 and ¢, &, 6, ..., and ¢, are constants.



Linear Homogenous Recurrence Relations

ExamPLE 8.2.2

Consider the following recurrence relations.

(1) = 31+ o
(1) a,=%1_1+5H
(i) a,=33a,_ 1+ a,_s-a,_,
(iv) @y = Ban_1 + s+ v 2a,_3
vy i, = 31+ na_e

Recurrence relations (i), (ii), (iii), and (iv) are recurrence relations with con-
stant coetficients. Recurrence relation (v), a4, = 3.1 + ®a,—2, 15 not a relation
with constant coefficients. Notice that (i) is a linear homogeneous recurrence

Linear Homogenous Recurrence Relations

DEFINITION 8.2.3

A sequence s, §1, S2. ..., &, ... 15 said to satisfy a linear homogeneous recurrence
relation

i, = €16, T adly, o+ 36, s+ <o 00,y 0 =10 (8.32)
of order k with constant coetficients it 55 = 5,00 + @sa_s + 555 + -+ + Sk
DEFINITION 8.2.4

T

If a sequence s, 51, 52, ..., §,, ... satishes a linear homogeneous recurrence rela-
tion, then the sequence §, s4%,. . ., 5, ... is also called a solution of that recur-
rence relation.

ExamPLE 8.2.5

Consider the recurrenece relation a, = 3a,_1. This is a linear homogeneous recur-
rence relation of order 1. Let ¢ be a nonzero number and suppose a, = " for
all n = 0. Then 4, = 3a,_; implies that " = 31"~ 1. Therefore, ¢ = 3. Thus, we
find that a, = 3". Hence, the sequence 1, 3, 82,93 . .8"% . is a solution of the
recurrence relation a, = 3a,_1.

Theoremg.2.7: Let
(r = €l u—]1 + (262, @F0, n=1 (8.34)

be a linear homogeneous recurrence relation with constant coethicients.
Let ¢ be a nonzero real number. Then the sequence {{"} satisfies the above
recurrence relation if and only if

= — 1t — 2 = 0. (8.35)



DeriniTion 8.2.8

Leta, = qa, | + cat,_s, ta 7 0, n = 1 be alinear homogeneous recurrence rela-
tion with constant coefficients. The equation

2

"=t — =1

is called the characteristic equation of the recurrence relation.

Theorem 8.2.9: Let

Iy = 16n_1 + tedy_2, 1 = 1 (8.37)

be a linear homogeneous recurrence relation of order 2, where ¢ and
are constants and & #= 0

(i) If the sequences {s,} and {§,} satisty (8.37), then for any constants b
and d, the sequence {bs, + dfp, } satishies (8.37).
(i) Let r be a root of the characteristic equation

*— ot —=2~0 (8.38)
of (8.37). Then the sequence {r"} is a solution of (8.37).

Theorem 8.2.10: Suppose that a sequence {d,} 15 a solution of the
recurrence relation (8.37). If n and » are the distinct roots of the
characteristic equation (8.38), then there exist constants b and o, which

'CDI'D”EI'}F 8.2.11. Suppose that

do = do. al = d

are the initial conditions tor the recurrence relation (8.37), where o, and
dy are constants. Further suppose that rp and r are the roots of (8.38). If
1 # 1s, then there exist constants # and o, which are to be determined by
initial conditions, such that the solution of the recurrence relation (8.37) is

iy = b +dry, n=0,1,.._.



ExamPLE 8.2.12

In this example, we solve the following linear homogeneous recurrence relation:

iy = Tt — 10a,_o (B.41)
with initial conditions
iy = 1
a = 8.

The characteristic equation of the given recurrence relation is:
! =Tt +10=10.
Next, we find the roots of this equation. Now,
2 =T+ 10=(t =5t —2)
and so
(=5 —=2y=10

This implies that the roots of the characteristic equation ared = 5, and { = 2. The
roots are distinct. By Theorem 8.2.10), there exist constants ¢ and ¢, which are to
be determined from initial conditions, such that

i, = 00" + 2", 4n =ik

We substitute # = () and n = 1, respectively, to obtain

iy = €1 1 f,
=0 + 2¢s.

Using the initial conditions, we get

e+ =1,
hop + 205 = 8.
Solving these equations for ¢ and s, we get ¢ = 2 and @ = —1. Hence,

i, =2-K"=2" n=I10

Hence, the sequence {2 5" — 27} is the solution.



Theorem 8.2.13: Suppose that a sequence {s,} is a solution of the
recurrence relation (8.37). If n and » are the roots of the characteristic
equation (8.38) such that n = » = r, then there exist constants b and
¢f, which are to be determined, such that the solution of the recurrence
relation (8.37) is

s, =" +dur”, n=10,1,.. ..

Corollary 8.2.14: Suppose that
ay = dy, a1 = dy

are the initial conditions for the recurrence relation (8.37), where dy and
dy are constants. Further suppose that n and % are the roots of (3.38)
such that 1 = m = r. Then there exist constants # and , which are to be
determined from initial conditions, such that the solution ef the recurrence
relation (8.37) is

i, = " +drr”, nm=0,1,_ .

ExaAmPLE 8.2.15

In this example, we solve the tollowing linear homogeneous recurrence relation:

= 4a, 1 — da, o
with initial conditions
iy = 4
m = 12

The characteristic equation of this recurrence relation is the quadratic equa-
tion

=i +4=0.
We find the roots of this equation. Now,
4+ 4=t —2)(t—2)
and so

(=210 =23 =0.



ExAmMPLE 8.2.15

This implies that the roots of the characteristic equation are { = 2, and t = 2. The
roots are not distinct. Therefore, by Theorem 8.2.13, there exist constants ¢) and
tw, which are to be determined from initial conditions, such that

iy = 02" + ee2", nw=01,. ...
We substitute n = () and » = |, respectively, to obtain
iy = 1)
M= 20 + 2.
Using the initial conditions, we get
g =4,
20 + 20 = 12.
Solving these equations for ¢ and @, we get ¢ = 4 and & = 2. Hence,
@y =4-2"+2.n-2" =292 4 ot = (9 42t = (w4 2)2°F w0

Thus, we find that the sequence {(n + 212%%1} s the solution.

Theorem 8.2.16; Let

Iy = C1fy—1 + t2lp_3 + 3@n_3F - + Chln_k, €k 70 (8.42)

be a linear homogeneous recurrence relation with constant coefficients.
Let ¢ be a nonzero real number. Then the sequence {"} is a solution of the
above recurrence relation it and only if

=1 n—2 n—5

" — ot 6l Gt" " — = gt" T =0,

DErinITION 8.2,17

Let an =11 + @,_2 + e5du_s + -+ + thtap, ¢ 7 () be alinear homogeneous
recuitence relation with constant coetficients. The equation

et "t - =0

is called the characteristic equation of this linear homogeneous recurrence rela-
tion.



REmMARK 8.2.18

To obtain the characteristic equation of the recurrence relation a, = ¢a,_1 +
(2 T Gyily—s oo T Getlyey, ¢ 7 (), substitute @, =", 1 # (), to get

" = " et " e g™,

Thus,
=t 4wt gt e gt
S gt et " = =t =)
= R -t - " - =) =0
Because ¢ £ 0, we have, ¥ — ¢ t*! — oi*2 — gt* — ... = ¢, =1, which is the

characteristic equation,

Theorem 8.2.19: Let
iy = Clilp—1 + fafly_2+ Gily_5 T - + Ceflu_k {H44j

be a linear homogeneous recurrence relation of order &, where ¢ 7 ) and
1, (2, 3, ..., and ¢ are constants. Let

gl — Rt . g =0
be the characteristic equation of (8.44).

(i) If the sequences {5, )7, and {f,}7* , are solutions of (8.44), then for
any constants b and d, the sequence {bs, + dp,}7", is a solution of
(B.44).

(ii) If rds a root of the characteristic equation, then the sequence 1, r,
ro. . oL ", .. is asolution of (8.44).

(iii) It m, 9w, ..., 1 are distinct roots of the characteristic equations, then
there exist constants &, &, &, ..., b, which are to be determined

from initial conditions, such that a solution of (8.44) is given by

iy = r + ber' + ke +--- 4+ by,



(iv) If r is a root, of multiplicity m, of the characteristic equation, then

m—1

'.} -
ity = 7", ay, =nr", a, =n-r",...,and a, = n r" are solutions of

(8.44).
(v)  Suppose that

gy = o, a1 =di, ..., @1 = dp

are the initial conditions for the recurrence relation (8.44), where
o, 1, ..., and d,_1 are constants. It n, n, ..., and n are { distinct
roots of the characteristic equation with multiplicities my, ms, ..., m,
and m) + me + --- + #y = k, then there exist constants ¢;, which are
to be determined from the initial conditions, such that the solution
of the recurrence relation (8.44) 15

y = (o + e+ -+ -‘:[,mln*“"l]rl”
+ (fg+inh+---+ ﬂm‘!ﬂm‘!_ljfé"

-t et et + awn™ ", n=0,1,....

A linear nnnhnmogenenus recurrence relation with constants coethicients is a re-
currence relation of the form

My + 01+ + Gttng = [ (1), (8.55)

where ¢,1 = 1,2,.. A hyare constants, ¢ # 0, and fin) is a nonzero realvalued
function.

If f(n) =M, then (8.55) isa linear homogeneous equation (which we discussed
in the preyious section). There is no known general method for solving nonho-
mogeneous linear recuwrrence equations. However, we can develop a method for
solving the special case

iy Qo Gy = B"pln), (8.56)

where b is a constant and p(2} is a polynomial in n.



Linear Nonhomogenous Recurrence Relations

ExampPLE 8.3.2

Consider the recurrence
tt, +Bea,_ | +6a,_s = 3",

Thisis a nonhomogeneous recurrence relation of the form (8.56). Here k = 2|
bh=3 and pin) = L.

ExAMPLE 8.3.3

Consider the recurrence
1 5 iy - "
i, + hea, | + 6a,_o = 3"(n" + G4 5.

Thisis a nonhomogeneous recurrence relation of the torm (8.56). Here k = 2,
h =23, and p(n) = n” + 6r + 5.

Linear Nonhomogenous Recurrence Relations

Theorem 8.3.5: Let

fln T Clp—1+ -+ + Cellni =,||r[ﬁ1.| EHE'E)

be a nonhomogeneous recurrence relation, where ¢, i=1,2,..., &, are
constants, ¢ #={l, and f(n) is a nonzero realvalued function. Suppose
{ra} 1s a particular solution of (8.62). Then {u,} is a solution of (8.62) if
and enlyif uw, = r, +5,, for all », and {s,} is a solution of the associated
homogeneous part, a4, + a1 @,_1 + -+ + Gk = 0.



Theorem 8.3.6: Let
iy, — o, 1= b"u, n=1 (B.67)
be a nonhomogeneous linear recurrence relation, with the initial condition
ly = ¥, (8.68)

where ¢, b, u, and & are constants, and » and # are nonzero. This
nonhomogeneous linear recurrence relation can be transformed into the
following linear homogeneous recurrence relation:

iy — (b + dian_1 + bda,_s =10, n=2

with the initial conditions @, = &, and a; = deg, + M.
Moreover,

(1) if & & d, then there exists a constant ¢, which 1s to be determined
from the initial condition, such that

b

(11) if b = ¢, then there exists a constant m, which to be 1s determined
from the initial condition, such that

ity =ph = anh".

ExampLE 8.3.7

In this example, we use Theorem 8.3.0 to solve the recurrence relation
a, — da, 1 =8", n=1,
with the initial condition
ty = 1.
This is a recurrence relation of the form
ity — da,_1 = h"u,

whered = 4, b =8, and u = 1. Because b # d,

bu
i, = ipd" + —ph"
h— d

&
=i 4].’ + _H.'.'
i 1

=apd" +2-8"

for all » = 0, where r 1s a constant satisfying the initial condition.
N ow

|l =g =@d" +2-8" = + 2.

Hence, ¢, = —1. This implies that @, = —1-4"+ 2. 8" forall n = 0.



Theorem 8.3.10: Let
a, —da, 1 =0 (un+uv), n=Il, (8.85)
be a nonhomogeneous linear recurrence relation, with the initial condition
oy = ¢, (8.84)

where d, b, u, v, and g are constants, and b and u are nonzero. This
nonhomogeneous linear recurrence relation can be transtormed into the
following linear homogeneous recurrence relation:

a, — (2b+dia, |+ H2d+ bia,_o — b da, 5=10, n=3 (8.85)
with the initial conditions
= & and @ = dey, + bile 4 o)
Moreover, the characteristic equation of (8.85) is

(t—d)(t — b2 = 0. (8.86)

Let {r.} be a solution of (H.85),
(1) Suppose b # di Then r, is of the form
. = md + e h” + conh”,

where ¢, ¢;, and & are some constants.

(i1)  Suppese b = d. Then {r,} is of the form
ry = " + onb” + canth”,

where g, ¢, and @ are some constants.



ExamPLE 8.3.11

Comnsider the recurrence relation

a, —da,_ 1 =2"4n+3), n=1 (8.94)
with initial conditions
ay = 1),
a) = 14.

This is a recurrence relation of the form
@, — di,_1 = h"(un + v).

Here d =3, =2, u =4, and v = 3.
We can solve this recurrence by using the technique of Theorem 8.3.1() and
obtaining

ay = a3 + 2" + en2",

where @, ], and @ are constants, which are to be determined from the initial

conditions.

ExAMPLE 8.3.11

Consider the recurrence relation

a, —da,_1=2"dn+3), n=1 (8.94)
with initial conditions
ay = (),
a = 4.

This 15 a recurrence relation of the form
a, —da, 1 = H"(un + v).

Here d =3, =2, u=4,and v = 3.
We cansolve this recurrence by using the technique of Theorem 8.3.10 and
obtaining

iy = 3" + 02" + wn?",

where @, 1, and @ are constants, which are to be determined from the initial
conditions.



Put n = 2in (8.92) to get

as — 3ap = 2°(4- 2+ 3) = 44.

Because a) = 14, we get
=314 4+ 44 = Bb.
Thus,
iy = in + 1 = ()
) = 3+ -24+6-2=14

=03 +0-2+wm-2-2°=85
This implies that
i+ o =10
3 +20+ 26 =14
ey + 401 + 8w = Bb

We solve these equations for ¢, ¢, and & to/'obtainsg = 30, q = =30, and ¢ = —&.
Thus, we find that

@ = 30(3") — 302" 1= 22", n = 0. (8.95)

Theorem 8.3.13; Let
dn t didn_1 + -+ dyan—y = " p(n) (8.96)

be a nonhomogeneous linear recurrence relation, where fpin) is a
polynomial of degree m. Then from this nonhomogeneous linear
recurrence relation we can obtain a linear homogeneous recurrence that
has following characteristic equation:

(t+dt* o+ dt— B =0, (8.97)

Moreover, a solution of (8.96) is also a solution of the linear homogeneous
recurrence whose characteristic equation is given by (8.97).



Linear Recurrences

There 1s a class of recurrence relations which can be solved analytically in
general. These are called linear recurrences and include the Fibonacci
recurrence.

Begin by showing how to solve Fibonacci:

Solving Fibonacci

Recipe solution has 3 basic steps:
1) Assume solution of the forman =rn
2) Find all possible r’s that seem to make this work. Call thesel r1 and
r2. Modify assumed solution to general solution an = Arln +Br2n
where A, B are constants.
3) Use initial conditions to find A,B and obtain specific_solution.

Solving Fibonacci

1) Assume exponential solution of the form an =rn :
Plug this into a, = a,.1 + a,.:
rn — rn-l + rn-2
Notice that all three terms havera common 7" factor, so divide this
out:
P = e S =+ 1

This equation is called the characteristic equation of the recurrence relation.

2) Find all possible r’s.that solve characteristic
ri=r +1
Call these rpand r» ' General solution is
a,=Ar," +Br," where A,B are constants.
Quadratic formula2 gives:
r=(1%5)2
So.# = (145)/12, 1y = (1-V5)/2
General solution:
a, =A [(1+V5)/2]" +B [(1-N5)/2]"



Solving Fibonacci

.
Use initial conditions ay= 0, a; =1 to find A,B and obtain specific
solution.

O=ao=A [(1+V5)2]°+B [(1-V5)/2]°= A +B

1=a; = A [(1+V5)/2]' +B [(1-V5)/2]" = A(1+V5)/2 +B (1-V5)/2

= (A+B)/2 + (A-B W5/2
First equation give B = -A. Plug into 2":
1=0+24Y5/2 soA=1A5,B=-1A5
Final answer:

(CHECK IT!) 4 =L 145) 1 (1457
N ) J5lo2

Linear Recurrences with Constant Coefficients

Previous method generalizes to solving “linear recurrence relations with

constant coefficients”:

DEF: A recurrence relation is said to be linear if an is a linear combination
of the previous terms plus a function of n. l.e. no squares, cubes or other
complicated function of the previous ai can occur. If in addition all the
coefficients are constants then the recurrence relation is said to have

constant coefficients.

Linear Recurrences with Constant Coefficients

Q: Which of the following are linear with constant coefficients?
1. a, =2a;,,

n-3
2.0a,=2a,1+2" - a,3
2

3. a,= a,.

4. Partition function: n—1



Linear Recurrences with Constant Coefficients

1. a,=2a,,;: YES
2. a,=2a,,+2"-a,;; YES

2 . . . . ..
3. a,=a, "> NO. Squaring is not a linear operation. Similarly a; = a,.1@;,
and a, = cos(a,.,) are non-linear.

n—1

4. Partition function: p, = Z p,-C(n—1,n—-1-i) NO.

i=0
This 1s linear, but coefficients are not constant as C (n -1, n -1-i ) is a non-
constant function of .

Homogeneous Linear Recurrences

To solve such recurrences we must first know how to solve an easier type of
recurrence relation:

DEF: A linear recurrence relation is‘said to be homogeneous if it is a linear
combination of the previous terms of the recurrence without an additional
function of n.

Q: Which of the following are homogeneous?
1. a,=2a,,
2. a, = 2Cln_1 + 2n-3 — dy3 n-1
3. Partition function:.. p, = Z p,-C(n—1,n—-1-1)

i=0

Linear Recurrences with Constant Coefficients

[E—

. a,=2a,,;: YES
dp=2a,, + 2" - a,5: No. There’s an extra term f (n) = 2"

3¢ Partition function: n-1
p, =2 p,-Cn—1n-1-i)
i=0

e

YES. No terms appear not involving the previous p;



Homogeneous Linear Recurrences with Const. Coeff.’s

The 3-step process used for the Fibonacci recurrence works well for general
homogeneous linear recurrence relations with constant coefficients. There
are a few instances where some modification is necessary.

Homogeneous — Complications

1) Repeating roots in characteristic equation. Repeating roots imply that
don’t learn anything new from second root, so may not have enough
information to solve formula with given initial conditions. We’ll see
how to deal with this on next slide.

2) Non-real number roots in characteristic equation.If the sequence has
periodic behavior, may get complex roots (for/example a, = -a,.,)".
We won’t worry about this case (in principle, same method works as
before, except use complex arithmetic).

Complication: Repeating Roots

EG: Solve a, =2a,.1-a,,, ap=1, a; =2
Find characteristic equation by plugging ina,=r":
F2-2rd =0
Since r - 2r +1 = (r -1)* the root 7= 1 repeats.
If we tried to solve by using general solution
a,=Ar{"+Br,"=A1"+B1" = A+B

which forces a,, to be a constant function (=2 €).
SOLUTION: Multiply.second solution by n so general solution looks like:

a,= Ar"+Bnr,"

Complication: Repeating Roots

Solve a, =2a,.1-a,0, ap=1, a; =2
General solution: a,= A1"+Bnl" = A+Bn

Plug into 1nitial conditions

1 =ay=A+B-0-1"= A

2=ay=A1'+B-1-1'=A+B

Plugging first equation A = 1 into second: 2 = 14+B implies B = 1.
Final answer: a,= 1+n

(CHECK IT!)



The Nonhomogeneous Case

Consider the Tower of Hanoi recurrence (see Rosen p. 311-313)
a, =2a,.+1.
Could solve using telescoping. Instead let’s solve it methodically. Rewrite:
a, - 2Cln_ 1= 1
1) Solve with the RHS set to 0, i.e. solve the homogeneous case.
2) Add a particular solution to get general solution. IL.e. use rule:

General _ General + Particular
Nonhomogeneous homogeneous Nonhomogeneous

The Nonhomogeneous Case

a,-2a,,=1
1) Solve with the RHS set to 0, i.e. solve
a,-2a,,=0
Characteristic equation: r - 2=0
so unique root is r = 2. General solution to homogeneous
equation is
a,=A2"

The Nonhomogeneous Case

2) Add a particular selution to get general solution for a, - 2a,.; = 1.

Use rule:
General _ General Particular
Nonhomogeneous |~ |homogeneous | [Nonhomogeneous

There are little tricks for guessing particular nonhomogeneous solutions.
For example, when the RHS is constant, the guess should also be a
constant.'

So guess a particular solution of the form b,=C.

Plug into the original recursion:

1=b,-2b,,=C-2C =-C. Therefore C =-1.

General solution: a,=A-2"-1.



The Nonhomogeneous Case

Finally, use initial conditions to get closed solution. In the case of the
Towers of Hanoi recursion, initial condition is:

a = 1

Using general solution an =A-2" -1 we get:

l=a; =A2'-1=24-1.

Therefore, 2 =2A, so A = 1.

Final answer: a, =2" -1

More Complicated

EG: Find the general solution to recurrence from the bit strings example:
a,=2a,,+2">-a,;

1) Rewrite as a,,- 2a,.1 + a,3= 2"3 and solve homegeneous part:
Characteristic equation: 7> - 2r +1 = 0.

Guess root r = *1 as integer roots divide.
r =1 works, so divide out by (r -1) to get
r2-2r+1 =@ -1)(r*+r-1).

More Complicated

r2-2r+1 = (r -1)(# 24r-1).
Quadratic formula on r “4r-1:
r=(-1x£5)2
Sor =1, = (-14V5)/2, r3= (-1-¥5)/2
General homogeneous solution:
a,=A + B [(-1+V5)/2]" +C [(-1-V5)/2]"



More Complicated

2) Nonhomogeneous particular solution to a, - 2a,.; + a,3= "3
Guess the form b, = k 2". Plug guess in:

k2'-2k2" + k2 =2"
Simplifies to: k =1.
So particular solution is b, = 2"

General General Particular
Nonhomogeneous homogeneous |  [Nonhomogeneous

Final answer:
a,=A + B [(-1+V5)2]" + C [(-1-V5)/2]" + 2"



