USN

Third Semester B.E. Degree Examination, December 2011 Electronic Circuits

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, selecting at least TWO questions from each part.
2. Any missing data may be assumed suitably.

PART - A

- a. Discuss with neat sketches, the relation of operating point of transistor for following cases:
 - i) Neat saturation region; ii) Neat cut off region; iii) At the centre of active region.

(08 Marks)

b. For the circuit shown in Fig.Q.1(b), calculate I_B , I_C , V_{CE} , V_C , V_E , V_B and V_{BC} . Assume B = 100. (08 Marks)

Explain the basic methods of triggering of SCR.

(04 Marks)

- 2 a. Explain with neat sketches, the operation, characteristics and parameters of n channel depletion type MOSFET. (08 Marks)
 - b. Explain with neat sketches, the operation of JFET along with its characteristic curves.

(08 Marks)

c. Discuss merits, demerits and applications of IGBTs.

(04 Marks)

3 a. Discuss the classification of optoelectronic devices, in detail.

(06 Marks)

- b. Explain with neat diagrams, the principle of operation, characteristics, advantages, disadvantages and applications of a photodiode. (08 Marks)
- e. Briefly discuss with necessary diagrams, the basic operation and construction of LED.

(06 Marks)

- 4 a. Obtain the expression for current gain, input impedence voltage gain, output impedance power gain of a transistor amplifier using complete h parameter model. (08 Marks)
 - b. In the common collector shown in Fig.Q.4(b), the transistor parameters are $h_{ic} = 1.2 \text{ k}$, $h_{fc} = -101$, $h_{rc} = 1$ and $h_{oc} = 25 \mu\text{A/v}$. Calculate R_i, A_i, A_v and R_o for the circuit. (08 Marks)

c. Explain common emitter, common collector amplifier along with its a.c. equivalent circuit.

(04 Marks)

PART - B

- 5 a. Explain the classification of large signal amplifiers as class A, class B, class C and class AB amplifiers. (06 Marks)
 - b. An amplifier with openloop voltage gain of 1000, delivers 10W of power output at 10% second harmonic distortion when i/p is 10 mV. A 40 dB negative feedback is applied and output paver is to remain at 10W. Determine required input signal V₃ and second harmonic distortion with feedback.

 (08 Marks)
 - c. Explain the advantages and disadvantages of negative feedback. (06 Marks)
- 6 a. Explain with a neat diagram Hartley oscillater and calpits oscillate as LC oscillator.

(06 Marks)

- b. Explain the various types of multivibrators. Also mention the applications. (06 Marks)
- c. Obtain the expression for time period T at the base of transistor, in case of wave shaping circuits.

 (08 Marks)
- 7 a. Explain with a functional block diagram, a typical three terminal IC voltage regulator.

(06 Marks)

b. Discuss the limitations of linear voltage regulators.

(06 Marks)

- c. Briefly discuss power converters in series and parallel connection along with neat diagrams.
 (08 Marks)
- 8 a. Discuss the requirements of a good instrumentation amplifier. (06 Marks)
 - b. Fig.Q.8(b) shows dual input, balanced output and differential amplifier configuration. Assuming silica transistor with $h_{ie} = 2.8$ K Ω , calculate: i) Operating point valves; ii) Differential gain; iii) Common mode gain; iv) CMRR; v) Output if $V_{S_1} = 70$ mV peak to peak at 1 kHz; vi) $V_{S_2} = 40$ mV peak to peak at 1 kHz. (10 Marks)

Fig.Q.8(b)

 Explain the various electrical characteristics of an ap-amp which are generally in the data sheet. (04 Marks)